
International Journal of Reproductive BioMedicine
Volume 20, Issue no. 8, https://doi.org/10.18502/ijrm.v20i8.11751
Production and Hosting by Knowledge E

Review Article

The current applications of cell-free fetal DNA
in prenatal diagnosis of single-gene diseases:
A review
Mohamad Mahdi Mortazavipour1 M.Sc., Reza  Mahdian2 M.D., Ph.D., Shirin
Shahbazi1 Ph.D.
1Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University,
 Tehran, Iran.
2Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran. 

Abstract
Prenatal diagnosis of hereditary diseases has substantially altered the way medical
geneticists are helping families affected by genetic disorders. However, the risk of
miscarriage and fear of invasive diagnostic procedures may discourage many couples
from seeking prenatal diagnosis. With the discovery of maternal plasma cell-free fetal
DNA, prenatal diagnosis has entered a new era of progress. Cell-free DNA is released
during normal physiological functions as well as through the cell death programs of
apoptosis and necrosis. It can be found in the plasma and other body fluids. Although
this method has the advantage of being noninvasive, it is still rather expensive and
requires advanced hardware and comprehensive data analysis. Promising implications
of noninvasive prenatal diagnosis methods for the diagnosis of common trisomy
disorders have paved the way for the development of more complicated assays of
single-gene disorders. Relative mutation dosage and relative haplotype dosage are
the most widely implemented assays for noninvasive prenatal diagnosis of single-gene
disorders. However, each assay has its own advantages and disadvantages. Relative
mutation dosage is based on the droplet digital polymerase chain reaction (PCR)
technique which includes quantification features of real-time PCR assays. Relative
haplotype dosage is based on next-generation sequencing that includes analysis of
the maternal and paternal genome followed by sequencing of maternal plasma cell-free
DNA. Co-amplification at a lower denaturation temperature PCR is another approach
that is based on forming heteroduplexes between alleles to selectively amplify paternal
mutations. In this review, we have described the most common noninvasive prenatal
diagnosis approaches and compared their applications in genetic disorder diagnosis
with different inheritance patterns.
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1. Introduction

1.1. Cell-free fetal DNA (cfDNA)

Cell-free DNA or cfDNA is released into the
plasma following a variety of normal physiological
functions such as the cell death programs of
apoptosis and necrosis (1). The release of this
double-stranded DNA is not limited to the plasma
and may occur in other body liquids such as
urine or cerebrospinal fluid. Since cfDNA has a
fragmented structure, its half-life is very short
(< 2.5 hr); as a result, it has a fast turnover
with rapid plasma clearance (2). Increased
levels of cfDNA are associated with a range
of conditions from infections to inflammation.
There is also evidence of elevated plasma
cfDNA levels with increasing age. However,
cfDNA has been most widely studied in cancer
cases and has been successfully used for the
evaluation of tumor progression (3). It is also
applicable in other pathogenic cell proliferation
conditions such as endometriosis (4). Currently,
cfDNA molecular profiling techniques are
employed by noninvasively identifying somatic
mutations; thus precise monitoring of minimal
residual disease in different cancers can help
to provide appropriate clinical management
(5).

Another promising application of cfDNA is in
prenatal diagnosis. Lo et al. showed that maternal
plasma is an unequal combination of fragmented
fetal DNA molecules and a large amount of
maternal cfDNA. With the new knowledge about
cfDNA, prenatal diagnosis has entered a new
era of progress (6). Before the availability of
cffDNA, the first-line prenatal diagnosis in medical
genetics centers included invasive methods such
as chorionic villus sampling, amniocentesis, and

cordocentesis. The risk of miscarriage and anxiety
from invasive procedures should always be
considered as they may discourage couples from
undergoing prenatal diagnostic tests (7).

By identifying the characteristics of cffDNA,
non-invasive prenatal diagnosis (NIPD) was able
to be implemented in clinics (8). NIPD was
first applied for the screening of chromosomal
aberrations focusing on chromosomes 21, 18,
and 13 aneuploidy and identification of sex
chromosomes. It is now claimed that NIPD after
the 10th wk of pregnancy has a detection rate
of 99.4% and a false-positive rate of 0.16% for
trisomy 21. For trisomy 18 the values are 96.6% and
0.05%; however, for trisomy 13 and monosomy
X the detection rates are lower (86.4% and
89.5%, respectively) (9). NIPD screening of these
major trisomies is based on deep sequencing
techniques, although it requires confirmatory
invasive testing due to the possibility of placental
mosaicism. Microdeletions can also be detected
using the chromosomal microarray technique.
Both deep sequencing and microarray methods
identify the areas of the genome with copy
number variation. Detection of specific fetal mRNA
expression is another way of screening for
aneuploidies. Placenta-specific protein 4, located
on chromosome 21, was one of the genes to
be applied in trisomy 21 analysis. For detection
of Edward’s syndrome, the expression of the
serpin peptidase inhibitor, clade B, membrane
2 gene, located on chromosome 18, has been
employed (10). NIPD diagnostic applications were
later expanded to Rh Blood Group D Antigen
(RhD) evaluation and fetal sex determination (11).
Ultimately, cffDNA has been proposed for NIPD
of single-gene diseases. Early uses were focused
on the detection of fetal de novo variants or
paternally inherited gene mutations. Researchers
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are currently validating the diagnostic application
of cffDNA for a variety of genetic diseases.

Here, we have reviewed the most relevant
NIPD approaches that are available for common
genetic disorders with an emphasis on single-
gene diseases, including their advantages and
levels of accuracy.

1.2. NIPD application in single-gene
disorders

From the 7th-9th wk of gestation, the cffDNA
makes up 10% of the circulating DNA in the
mother’s plasma which is sufficient for a variety
of fetal molecular diagnoses. It should be noted

that this quantity of DNA is still very low, which
makes the implementation of NIPD for single-
gene disorders very challenging. Also, since the
X chromosome of a male fetus is similar to one
of the mother’s Xs and has the same haplotype, it
can be difficult to discriminate between maternal
and fetal genomic variants in X-linked diseases.
Additionally, in autosomal recessive disorders,
prenatal diagnosis becomes more complicated
when the parents have the same mutation with the
same haplotype (12). Therefore, various innovative
methods have been introduced to perform genetic
analysis of cffDNA samples. These methods are
mainly based on allele discrimination assays or
relative allele dosage analyses (Table I).

Table I. NIPD studies based on detection/exclusion of causative mutations for autosomal disorders

Author, year (Ref) Pathology Inheritance Methods Sensitivity (%) Specificity (%)

Satio et al., 2000 (13) RFLP NA
Li et al., 2007 (14) MALDI TOF NA
Lim et al., 2011 (15) QF-PCR NI
Chitty et al., 2015 (16) NGS 96.2 100
Orhant et al., 2016 (17) dPCR +

minisequencing
100 100

Vivanty et al., 2019 (18)

Achondroplasia AD & de novo

HRM +
minisequencing

100 100

Van den Oever et al. 2015 (12) HR-MCA NI
Gonzalez-Gonzalez et al. 2003
(19)

Huntington’s
disease

AD (dynamic
mutation)

QF-PCR NI

Gonzalez-Gonzalez et al. 2008
(20)

STRs analysis NI

Amiciacci et al., 2000 (21) Myotonic
dystrophy

AD (dynamic
mutation)

PCR & dot blot NA

Hemophilia XR Droplet digital
PCR

99.8 99.8

Ornithine
transcarbamylase

deficiency

XR Droplet digital
PCR

99.8 99.8

DFNB1 AR Droplet digital
PCR

99.8 99.8

Acetylcholine
receptor

deficiency

AR (compound
heterozygote)

Droplet digital
PCR

99.8 99.8

Camunas-Soler et al., 2018 (22)

Mevalonate
kinase deficiency

AR Droplet digital
PCR

99.8 99.8

Camunas-Soler et al., 2018 (22) AR (compound
heterozygote)

Droplet digital
PCR

99.8 99.8
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Table I. (continued)

Author, year (Ref) Pathology Inheritance Methods Sensitivity (%) Specificity (%)

Hill et al., 2015 (23) NGS 100 100

Nasis et al., 2004 (24) Allele-specific
PCR

100 100

Bustamante-Aragones et al.,
2008 (25)

Minisequencing NI

Guissart et al., 2015 (26)

Cystic fibrosis AR

MEMO qPCR NI

NIPD: Non-invasive prenatal diagnosis, AD: Autosomal dominant, XR: X-linked recessive, AR: Autosomal recessive, NA: Not
applicable, NI: Not indicated, RFLP: Restriction fragment lentgh polymorphism, MALDI TOF: Matrix assisted laser desorption
ionization time of flight, QF-PCR: Quantitative fluorescent polymerase chain reaction, PCR: Polymerase chain reaction, NGS:
Next generation sequencing, dPCR: Digital polymerase chain reaction, HRM: High resolution melting, HR-MCA: High-resolution
melting curve analysis, DFNB1: Nonsyndromic hearing loss and deafness, STRs: Short tandem repeats, MEMO: Mutant
enrichment with 3′-modified oligonucleotides, qPCR: Quantitative polymerase chain reaction

1.2.1. New diagnostic approaches:
Relative mutation dosage (RMD) and
relative haplotype dosage (RHD)

RMD analysis is mainly based on the droplet
digital polymerase chain reaction (PCR), a
technique that is comparable to conventional
PCR while including quantification features of
real-time PCR. The main technical concept of this
method is diluting DNA samples as low as one
copy of the genome per micro-unit droplet (13). The
micro-units could contain one or no copy of the
template DNA. Micro-unit droplets are prepared
using water-in-oil emulsion or micro-channel
chips (27). This level of dilution accounts for the
increased sensitivity and specificity of the PCR
reaction by reducing competition effects of target
DNA molecules (11). Each digital PCR micro-unit
contains 6 nL of reagent mixture which is the
minimum volume required for successful PCR
amplification. PCR reactions are performed in a
real-time PCR apparatus where the amplification of
each variant on the target DNA can be detected by
a particular fluorophore (28). Recently, researchers
have started implementing this assay for NIPD
of single-gene disorders. The interpretation of
the results depends on the inheritance pattern

of the disorder, which is explained in more detail
below.

RHD is a next generation sequencing-based
NIPD technique, involving maternal and paternal
whole-genome sequencing followed by the
analysis of cffDNA. The characteristics of the
affected fetus are determined by estimating
the proportion of mutated to normal alleles.
The advantage of RHD over RMD is that with
RHD it is possible to examine areas where
direct PCR is not possible due to pseudogenes,
rearrangements, and complex mutations. However,
the problem with RHD is that it requires samples
of the proband and his/her siblings. Other
limitations of RHD are the high costs of whole
exome sequencing (WES) and the complexities
of the associated bioinformatics data analysis
(29).

To overcome these challenges, targeted
locus amplification (TLA) of genomic regions
around mutations that harbor informative single
nucleotide polymorphisms (SNPs) has been
considered. These linked SNPs that are inheritable
from one parent have known SNP haplotypes
(16). The main purpose of this method is to
determine the paternal or maternal origin of the
allele. Therefore, it is a successful strategy to
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find maternal mutations in the fetus which has
always been challenging (30). Following targeted
sequencing of the desired regions of the maternal
and paternal genome, parental haplotypes are
mapped to relevant haplotype data obtained from
cffDNA (31). TLA has the ability to analyze multiple
genomic regions, which is an advantage for the
simultaneous detection of multiple single-gene
disorders. It will not only reduce costs but also help
in cases where the first pregnancy is examined
and there is no previous patient sample available.
TLA can also be used in trinucleotide repeat
expansions that are challenging to be investigated
by other methods (29).

1.3. Sex determination approaches
and X-linked recessive inheritance

Mutations in the genes located on the X
chromosome can lead to an X-linked disorder

that is predominantly exhibited in male fetuses,
while females are either carriers or unaffected.
In this regard, sex determination using cffDNA
can prevent unnecessary invasive tests such as
chorionic villus sampling in female fetuses (Figure
1). While NIPD sex determination has reliable results
between the 7th-12th wk of gestation, conventional
ultrasound often is unable to detect the fetus’
sex earlier than the 13th wk of gestation (18). The
presence of Y-specific chromosomal sequences in
maternal plasma logically indicates male-bearing
pregnancies (32). Based on this, studies have
been conducted to determine the reliable Y-
chromosomal target sequences for non-invasive
sex determination (33, 34, 35). The real-time
PCR assay has been widely applied to detect Y-
chromosomal sequences including SRY, DYS14,

DAZ, AMYLY, and PAP genes. The results of a study
have indicated a sensitivity of up to 100% at the 8th

wk of gestation (36).

Figure 1. Flowchart of prenatal sex determination for a pregnancy at risk of X-linked disorders. Mutations in the genes located
on the X chromosome can lead to an X-linked disorder that is predominantly exhibited in male fetuses, while females are either
carriers or unaffected. Therefore, a female fetus needs no more evaluation while the mutation status in a male fetus should be
determined by either invasive or non-invasive methods. CVS: Chorionic villus sampling, RMD: Relative mutation dosage, RHD:
Relative haplotype dosage.

However, complementary molecular tests
should be performed to determine whether a
male fetus has inherited the maternal causative
mutation. These tests should be able to effectively
differentiate the fetal mutation in the presence of a
large amount of maternal DNA harboring the same
allele. In this case, highly sensitive and specific

techniques such as RMD and RHD have been
implemented for clinically validated assays. In a
previous study, RMD analysis was able to detect
maternal mutations causing X-linked abnormalities
in male fetuses (22).

The inheritance of X-linked causative mutations
in an at-risk pregnancy (XnXm × XnY) could result
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in either an affected fetus (XmY) or a normal fetus
(XnY). Thus, the maternal plasma may consist of
maternal XnXm mixed with either XnY (normal
fetus) or XmY (affected fetus) genotypes. To
determine the fetus genotype, maternal plasma
is diluted and transferred into micro-units as a
water-in-oil emulsion or micro-channel chips.
Statistically, each micro-unit may contain either
one or no copy of the template DNA. Each
micro-unit contains all the essential reagents

for a PCR reaction which is performed in a
real-time PCR instrument. 2 distinct TaqMan
probes are designed for normal and mutant
alleles which are labeled with different dyes
such as VIC and FAM. Amplification signals
are emitted if a micro-unit contains template
DNA. The emitted signals are collected and an
amplitude diagram of each dye is drawn for every
micro-unit. The mutant allele ratio (M) is calculated
by using the formula M = m / m + n (Figure 2).

 

Figure 2. Flow chart of detecting fetal mutations in maternal plasma using the RMD technique in X-linked disorders. Maternal
plasma may contain maternal XnXm mixed with either XnY (normal fetus) or XmY (affected fetus) genotypes. If the fetus is unaffected,
the m/m+n ratio is less than 0.5 while the affected fetus displays a ratio higher than 0.5.

It is assumed that a heterozygote non-pregnant
woman has an M proportion of 0.5 (16). M values
> 0.5 indicate an affected fetus whereas non-
affected samples display M values < 0.5. The M
and fetal DNA fraction data are analyzed by the
sequential probability ratio test. The interpretation
of RMD is rather convenient as it needs specific
primers and probes for every particular mutation
(30).

RHD can be considered as an alternative
approach to detect maternal mutations in male
fetuses. As shown in figure 3, haplotype-I is
considered as normal haplotype and haplotype-II
as the mutated one. The genomic data obtained
from maternal plasma cfDNA samples are collected
and analyzed in parallel to corresponding genomic
data of the parents. The relative quantity of
haplotype-I and haplotype-II are determined and
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if the haplotype-I amount is greater than that of
haplotype-II, the fetus might be considered normal,

whereas a higher relative quantity of haplotype-II
indicates that the fetus might be affected.

 

Figure 3. Flow chart of detecting fetal mutations in maternal plasma using the RHD technique in X-linked disorders. Implementation
of the RHD analysis for an at-risk pregnancy (XnX𝑚× XnY) can be performed using massively parallel sequencing to determine
the maternal and paternal haplotypes. The desired method can be either whole-genome sequencing or TLA.

1.4. Autosomal dominant disorders

In autosomal dominant inheritance, detecting
mutations of fetal origin in maternal plasma
indicates an affected fetus. As shown in figure
4, there are 2 different approaches for the
implementation of NIPD in maternally or paternally
inherited autosomal dominant disorders. The
detection/exclusion of paternal mutations in
maternal plasma determines the status of
the fetus in at-risk pregnancies (37). So far,
various procedures have been developed for
the detection/exclusion of paternal mutations
in maternal plasma (Table I). In contrast, the
differentiation of fetal alleles is very challenging
for maternally inherited mutations. To overcome
this limitation, RMD and RHD methods have

been successfully applied. In both methods, an
equal quantity of mutated and wild-type alleles
represents an affected fetus.

However, these methods are not applicable
in some autosomal dominant disorders such as
Huntington’s disease and myotonic dystrophy.
These diseases are mainly caused by dynamic
mutations classified as trinucleotide repeat
expansions. Given that the fragmented fetal
DNA in plasma measures about 150 bp, the
detection of paternal allele expansions may
need alternative methods. For example, the
trinucleotide expansions of myotonic dystrophy
and Friedreich’s ataxia consist of more than 50
and 200 repeats, respectively (5). To this end,
quantitative fluorescent PCR (19), TLA (31), and PCR
plus fragment analysis (12) have been used for
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the detection of paternal expansions in maternal
plasma. TLA is appropriate for pregnancies
in which either paternal or maternal repeats
are identical or paternal repeats are much

longer than their maternal counterparts (20).
Nevertheless, to improve the analysis accuracy,
these approaches may be designed exclusively
for particular inheritance patterns.

 

Figure 4. NIPD approaches for genotyping of fetuses at risk of autosomal inherited disorders. RMD: Relative mutation dosage,
RHD: Relative haplotype dosage.

1.5. Autosomal recessive disorders

As displayed in figure 4, NIPD for autosomal
recessive disorders has been divided into 2
categories according to the type of the parents’
mutations; when the parents have different
mutations the fetus is at risk of being compound
heterozygote and detection/exclusion strategies
are applicable for maternal plasma in these cases
(8). If paternal mutations are detectable in the
maternal plasma, invasive procedures should be
performed to confirm whether the fetus inherited a
maternal mutation or not. In contrast, the absence
of paternal mutations in maternal plasma indicates
that the fetus is unlikely to be affected, and
therefore further unnecessary invasive tests can
be avoided.

Table I shows various detection/exclusion
strategies that have been used to detect autosomal
recessive disorders. Recently, co-amplification at
a lower denaturation temperature PCR (COLD-
PCR) has been described as an innovative

detection/exclusion procedure. In brief, the assay
exploits melting temperature differences between
paternal and maternal alleles based on forming
hetero-duplex PCR fragments. In COLD-PCR,
critical denaturation temperatures lower than the
melting temperature of homo-duplexes are set to
selectively amplify paternal alleles (38).

Galbiati et al. reported full concordance between
COLD-PCR and microarray techniques as 2
independent, highly sensitive detection/exclusion
approaches. However, despite advantages such
as cost-effectiveness and rapidity, both COLD-PCR
and microarray are limited to NIPD for parents with
different mutations (39). RMD or RHD approaches
have been successfully implemented when
parents have the same mutation (5).

In RMD, a balanced proportion between mutant
and normal alleles in the maternal plasma indicates
a heterozygote fetus whereas an imbalanced
allele proportion may represent either a normal
or affected homozygote fetus (37). An example of
RHD or TLA interpretation for NIPD of autosomal
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recessive cases is shown in figure 5. An archetype
of the autosomal recessive diseases commonly

proposed for NIPD is beta-thalassemia, especially
in the areas where the disease is common (40).

 

Figure 5. RHD implementation for genotyping of fetuses at risk of autosomal recessive disorders. In non-pregnant female mutation
carriers, maternal plasma cell-free DNA consists of an equal proportion of haplotype-I and haplotype-II, which are considered
normal and mutant haplotypes, respectively. In the 10th wk of pregnancy, fetal cell-free DNA is mixed with the maternal haplotypes
and changes haplotype-I and haplotype-II proportions. The interpretation of the results depends on the detection of paternal
haplotypes haplotype-III or haplotype-IV.

Given the cost and complexity of the
management of beta-thalassemia, prenatal
diagnosis is recommended to at-risk families (41,
42). Some countries such as Italy, Greece, Cyprus,
and Iran have developed screening programs
for carrier detection and prenatal diagnosis (40).
More than 200 distinct mutations in the HBB

gene involving single base mutations, small and
large deletion, and aberrant splicing mutations
can lead to the clinical features of the disorder
(41).

Considering the autosomal recessive
inheritance pattern of this disease, NIPD for
beta-thalassemia can be implemented according
to the parent’s mutation types (43). RMD and RHD
approaches have been recommended for parents
that share similar mutations (22, 44, 45).

Furthermore, detection/exclusion strategies
can identify a paternal mutation in maternal
plasma in compound heterozygote cases (46,
47). Investigation of 75 beta-thalassemia carriers
for 2 common mutations (Cd39 and IVSI.110)
using full COLD-PCR showed promising results
in a study conducted in Italy (39). We also
successfully developed a COLD-PCR-based
method to detect the paternal beta-thalassemia
IVS-II-1 (G>A) mutation in maternal cell-free
DNA (48). Furthermore, another study showed
that fast temperature-gradient COLD-PCR was
able to identify 2 paternal SNPs in maternal
plasma samples (38). The studies which have
reported the results of NIPD of beta-thalassemia
as an archetype of single-gene disorders are
summarized in table II.
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Table II. NIPD approaches implemented for determining fetal genotype in beta-thalassemia

Author, year (Ref) Mutations Methods Sens. Spec.

Li et al., 2005 (49) IVSI-1, IVSI-6, IVSI-110, and codon 39
(compound heterozygote)

Peptide-nucleic-acid clamp and
allele-specific real-time PCR

100 93.8

Galbiati et al., 2016 (39) Cd39 and IVSI.110 COLD-PCR and microarray 100 100

Mortazavipour et al., 2020 (48) IVSII-1 COLD-PCR NA

Phylipsen et al., 2012 (50) 12 different fragments along with the
β-globin gene cluster

PAP and MCA NI

Papasavva et al., 2008 (51) 11 SNPs APEX method NI

Yi et al., 2010 (52) IVSII-654 (C→T) PCR/LDR/capillary
electrophoresis

NI

Yi et al., 2010 (53) CD17 (A→T) PCR/LDR/capillary
electrophoresis

1:5000 NI

Chiu et al., 2002 (54) 41/42 (–CTTT) Real-time PCR 100 100

Lun et al., 2008 (44) CD41/42 (–CTTT) RMD & NASS NI

Li et al., 2009 (55) Cd39 Mutation-specific PCR & MALDI
TOF

NA

Ramezanzadeh et al., 2016 (56) CD44, IVSI-1, FR8-9, and IVSI-5 Allele-specific real-time PCR 100 100

Wang et al., 2017 (45) CD41-42 (-TTCT) RHD 100 100

Camunas-Soler et al., 2018 (22) Droplet digital PCR (RMD) 99.8 99.8

Chan et al., 2010 (57) 4 SNPs in connection with HBB gene AS-APEX 100 100

Byrou et al., 2018 (38) 2 SNPs (rs7480526 and rs968857) Fast TG COLD- PCR NA

Yenilmez et al., 2013 (46) Used 4 primers:
P1:Cap +22 (G>A) and-30 (C>T)

P2: IVSI-1 (G>A), IVSI-5 (G>A), IVSI-6
(T>C), IVSI-110, (G>A), Cd8 (−AA),

Cd9/10 (+T), Cd15 (G>A), and Cd39 (C>T)
P3: IVSII-1 (G>A)

P4: IVSII-745 (C>G) and IVSII-848 (C>A)

HRM 100 100

Saba et al., 2017 (47) c.118C4T Semiconductor sequencing 100 100

Lam et al., 2012 (29) Cd41/42, 28(A>G), and CD17 MPS 100 100

NIPD: Non-invasive prenatal diagnosis, Spec: Specificity (%), Sens: Sensitivity (%), NA: Not applicable, NI: Not indicated, PAP:
Pyrophosphorolysis-activated polymerization, MCA: Melting curve analysis, SNPs: Single nucleotide polymorphisms, LDR:
Ligase detection reaction, NASS: Nucleic acid size selection, MALDI TOF: Matrix assisted laser desorption ionization time of
flight, RMD: Relative mutation dosage, RHD: Relative haplotype dosage, AS: Allele specific, APEX: Arrayed primer extension,
TG COLD-PCR: Temperature gradient coamplification at lower denaturation temperature PCR, HRM: High resolution melting,
MPS: Massively parallel sequencing, PCR: Polymerase chain reaction

2. Conclusion

Recent advances in NIPD for the identification
of single-gene diseases have provided promising
prospects in prenatal diagnosis. We can expect
that in the coming decade, a significant number
of single-gene disorders will be detected by
NIPD methods. However, ethical issues are
among the concerns that should be addressed
before the widespread implementation of

advanced NIPD techniques. Ultimately, population-
specific genome databases are highly desired
for their high specificity in the detection of
mutations within the context of inter-population
variation.
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