Volume 13, Issue 7 (9-2015)                   IJRM 2015, 13(7): 413-420 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Wargasetia T L, Shahib M N, Martaadisoebrata D, Dhianawaty D, Hernowo B. Characterization of apoptosis and autophagy through Bcl-2 and Beclin-1 immunoexpression in gestational trophoblastic disease. IJRM 2015; 13 (7) :413-420
URL: http://ijrm.ir/article-1-665-en.html
1- Faculty of Medicine, Maranatha Christian University Jl. Prof. Drg. Suria Sumantri MPH No. 65, Bandung 40164, Indonesia , Teresa.lw@med.maranatha.edu
2- Faculty of Medicine, Padjadjaran University Jl. Eijkman No. 38 Bandung 40161 Indonesia
Abstract:   (2490 Views)
Background: The pathogenesis of Gestational Trophoblastic Disease (GTD) is not clearly known.
Objective: In this study, immunoexpression of proteins Bcl-2 and Beclin-1 in trophoblastic lesions and normal trophoblastic tissue was conducted to study the mechanism of apoptotic and autophagic cell death that is expected to complete the study of GTD pathogenesis.
Materials and Methods: Bcl-2 and Beclin-1 immunoexpression were studied on complete hydatidiform mole, partial hydatidiform mole, invasive mole, choriocarcinoma and normal placenta slides.
Results: The average total scores of Bcl-2 immunoexpression had a decreasing value, starting from partial hydatidiform mole (3.09), complete hydatidiform mole (2.36), invasive mole (1.18) to choriocarcinoma (0) when compared to normal placenta (6). The results showed no significant difference in Beclin-1 immunoexpression total score between complete hydatidiform mole, partial hydatidiform mole and invasive mole, namely that the value of the average total score of Beclin-1 was low (2.27, 2.45 and 2.36), but on the contrary choriocarcinoma showed an increasing strong Beclin-1 expression with the average total score of 4.57.
Conclusion: Bcl-2 expression decreases in line with the excessive proliferation of trophoblast cells in hydatidiform mole and leads to malignancy in invasive mole and choriocarcinoma. The decreased expression of Beclin-1 that leads to autophagy defects in complete hydatidiform mole, partial hydatidiform mole and invasive mole shows the role of autophagy as tumor suppressor, whereas strong Beclin-1 expression shows the survival role of autophagy in choriocarcinoma. The change of Bcl-2 activity as antiapoptosis and Beclin-1 as proautophagy plays a role in pathogenesis of GTD.
Full-Text [PDF 872 kb]   (568 Downloads) |   |   Full-Text (HTML)  (326 Views)  
Type of Study: Original Article |

References
1. Slavik T. Pathology of gestational trophoblastic neoplasia: a review with recent insight. South Afr J Gynaecol Oncol 2010; 2: 56-60. [DOI:10.1080/20742835.2010.11441161]
2. Sebire N, Lindsay L Current issues in the histopathology of gestational trophoblastic tumors. 2010; 29: 30-44.
3. Xue W, Khoo US, Ngan HYS, Chan KYK, Chiu PM, Tsao SW, et al. Minichromosome maintenance protein 7 expression in gestational trophoblastic disease: correlation with Ki67, PCNA and clinicopathological parameters. Histopathol 2003; 43: 485-490. [DOI:10.1046/j.1365-2559.2003.01728.x]
4. Fong P, Xue WC, Ngan HYS, Chan KYK, Khoo US, Tsao SW,- et al. Mcl-1 expression in gestational trophoblastic disease correlates with clinical outcome: a differential expression study. Cancer 2004; 103: 268-276. [DOI:10.1002/cncr.20767]
5. Liu J, Lin M, Yu JY, Liu B, Bao JK. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Letters 2011; 300: 105-114. [DOI:10.1016/j.canlet.2010.10.001]
6. Kroemer G, Levine B. Autophagic cell death: the story of misnomer. Nat Rev Moll Cell Biol 2008; 9: 1004-1010. [DOI:10.1038/nrm2529]
7. Vermeulen K, Van Bockstaele DR, Berneman ZN. Apoptosis: mechanisms and relevance in cancer. Ann Hematol 2005; 84: 627-639. [DOI:10.1007/s00277-005-1065-x]
8. Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell death. Cell Death Differ 2005; 12: 1528-1534. [DOI:10.1038/sj.cdd.4401777]
9. Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 2005; 6: 505-510. [DOI:10.1038/nrm1666]
10. Miracco C, Cosci E, Oliveri G, Luzi P, Lorenzo P, Irene M, et al. Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumors. Intl J Oncol 2007; 30: 429-436.
11. Ahn C, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS, et al. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 2007; 115: 1344-1349. [DOI:10.1111/j.1600-0463.2007.00858.x]
12. Jin S, White E. Tumor supression by autophagy through the management of metabolic stress. Autophagy 2008; 4: 563-566. [DOI:10.4161/auto.5830]
13. Yao Q, Chen J, Lv Y, Wang T, Zhang J, Wang L. The significance of expression of autophagy-related gene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumor Biol 2011; 32: 1163-1171. [DOI:10.1007/s13277-011-0219-9]
14. Fulop V, Mok SC, Genest DR, Szigetvari I, Cseh I, Berkowitz RS. C-myc, c-erB-2, c-fms and bcl-2 oncoproteins expression in normal placenta, partial and complete mole, and choriocarcinoma. J Reprod Med 1998; 43: 101-110.
15. Chen N, Debnath J. Autophagy and tumorigenesis. FEBS Letters 2010; 584: 1427-1435. [DOI:10.1016/j.febslet.2009.12.034]
16. Liang X, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672-676. [DOI:10.1038/45257]
17. Aita V, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 1999; 59: 59-65. [DOI:10.1006/geno.1999.5851]
18. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112: 1809-1820. [DOI:10.1172/JCI20039]
19. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haplosufficient tumor suppressor. Proc Natl Acad Sci USA 2003; 100: 15077-15082. [DOI:10.1073/pnas.2436255100]
20. Lebovitz C, Bortnik SB, Gorski SM. Here, there be dragons: charting autophagy-related alterations in human tumors. Clin Cancer Res 2012; 18: 1214-1226. [DOI:10.1158/1078-0432.CCR-11-2465]
21. Shen Y, Li DD, Wang LL, Deng R, Zhu XF. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy 2008; 4: 1067-1068. [DOI:10.4161/auto.6827]
22. Ding Z, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 2008; 68: 9167-9175. [DOI:10.1158/0008-5472.CAN-08-1573]
23. Shi Y, Ding ZB, Zhou J, Qiu SJ, Fan J. Prognostic significance of Beclin 1-dependent apoptotic activity in hepatocellular carcinoma. Autophagy 2009; 5: 380-382. [DOI:10.4161/auto.5.3.7658]
24. Jiang Z, Shao LJ, Wang WM, Yan XB, Liu RY. Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep 2012; 39: 259-267. [DOI:10.1007/s11033-011-0734-1]
25. Won K, Kim GY, Kim YW, Lim SJ, Kim YW. Decreased Beclin-1 expression is correlated with the growth of the primary tumor in patients with squamous cell carcinoma and adenocarcinoma of the lung. Hum Pathol 2012; 43: 62-68. [DOI:10.1016/j.humpath.2011.04.007]
26. Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of clinical outcome in patients with esophageal squamous cell carcinoma and correlated to hypoxia-inducible factor (HIF)-1a. Pathol Oncol Res 2009; 15: 487-493. [DOI:10.1007/s12253-008-9143-8]
27. Dong L, Hou Hou YJ, Tan YX, Tang L, Pan YF, Wang M, et al. Prognostic significance of Beclin 1 in intrahepatic cholangiocellular carcinoma. Autophagy 2011; 7: 1222-1229. [DOI:10.4161/auto.7.10.16610]
28. Li B, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, et al. The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers. Autophagy 2009; 5: 303-306. [DOI:10.4161/auto.5.3.7491]
29. Harma M, Harma, MI, Ozardali I. bcl-2 expression in complete hydatidiform mole. J Turkish German Gynecol Assoc 2004; 5: 314-317.
30. Rath G, Soni S, Prasad CP, Salhan S, Jain AK, Saxena S. Bcl-2 and p53 expressions in Indian women with complete hydatidiform mole. Singapore Med J 2011; 52: 502-507.
31. Hussein M. Analysis of p53, BCL-2 and epidermal growth factor receptor protein expression in the partial and complete hydatidiform moles. Exp Mol Pathol 2009; 87:63-69. [DOI:10.1016/j.yexmp.2009.03.005]
32. Mochizuki M, Maruo T, Matsuo H, Samoto T, Ishihara N. Biology of human trophoblast. Int J Gynaecol Obstet 1998; 60: S21-28. [DOI:10.1016/S0020-7292(95)02403-4]
33. Qiao S, Nagasaka T, Harada T, Nakashima N. p53, bax and bcl-2 expression, and apoptosis in gestational trophoblast of complete hydatidiform mole. Placenta 1998; 19: 361-369. [DOI:10.1016/S0143-4004(98)90075-3]
34. Lurain J. Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease. Am J Obstet Gynecol 2010: 531-539. [DOI:10.1016/j.ajog.2010.06.073]
35. MacManus J, Linnik MD. Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab 1997; 17: 815-832. [DOI:10.1038/aj.jcbfm.9590266]
36. Ka H, Hunt JS. Temporal and spatial patterns of expression of inhibitors of apoptosis in human placentas. Am J Pathol 2003; 163: 413-422. [DOI:10.1016/S0002-9440(10)63671-1]
37. Sharp A, Heazell AEP, Crocker IP, Mor G. Placental apoptosis in health and disease. Am J Reprod Immunol 2010; 64: 159-169. [DOI:10.1111/j.1600-0897.2010.00837.x]
38. Straszewski-Chavez S, Abraham VM, Mor G. The role of apoptosis in the regulation of trophoblast survival and dfferentiation during pregnancy. Endocr Rev 2005; 26: 877-897. [DOI:10.1210/er.2005-0003]
39. Yang B, Lu YJ, Wang ZG. MicroRNAs and apoptosis: implications in the molecular therapy of human disease. Clin Exp Pharm Physiol 2009; 36: 951-960. [DOI:10.1111/j.1440-1681.2009.05245.x]
40. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M. miR-15 and miR-16 induce apoptosis by targeting BCL2. PNAS 2005; 102: 13944-13949. [DOI:10.1073/pnas.0506654102]
41. Loro L, Johannessen AC, Vintermyr OK. Loss of BCL-2 in the progression of oral cancer is not attributable to mutations. J Clin Pathol 2005; 58: 1157-1162. [DOI:10.1136/jcp.2004.021709]
42. Chatla C, Jhala NC, Katkoori VR, Alexander D, Meleth S, Grizzle WE, et al. Recurrence and survival predictive value of phenotypic expression of Bcl-2 varies with tumor stage of colorectal adenocarcinoma. Cancer Biomark 2005; 1: 241-250. [DOI:10.3233/CBM-2005-14-507]
43. Loro L, Johannessen AC, Vintermyr OK. Decreased expression of bcl-2 in moderate and severe oral epithelia dysplasias. Oral Oncol 2002; 38: 691-698. [DOI:10.1016/S1368-8375(02)00002-7]
44. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5: 726-734. [DOI:10.1038/nrc1692]
45. Liang X, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, et al. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 1998; 72: 8586–8596.
46. Apel A, Zentgraf H, Buchler MW, Herr I Autophagy — a double-edged sword in oncology. Int J Cancer 2009; 125: 991-995. [DOI:10.1002/ijc.24500]
47. Kung C, Budina A, Balaburski G, Bergenstock MK, Murphy ME. Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr 2011; 21:71-100. [DOI:10.1615/CritRevEukarGeneExpr.v21.i1.50]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb