Volume 14, Issue 3 (3-2016)                   IJRM 2016, 14(3): 173-180 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadzadeh R, Khosravi S, Zavareh S, Ghorbanian M T, Paylakhi S H, Mohebbi S R. Vitrification affects the expression of matrix metalloproteinases and their tissue inhibitors of mouse ovarian tissue. IJRM 2016; 14 (3) :173-180
URL: http://ijrm.ir/article-1-735-en.html
1- School of Biology, Damghan University, Damghan, Iran
2- School of Biology, Damghan University, Damghan, Iran , Zavareh.S@du.ac.ir
Abstract:   (2674 Views)
Background: One of the most major obstacles of ovarian tissue vitrification is suboptimal developmental competence of follicles. Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) and their tissue inhibitors TIMP-1 and TIMP-2 are involved in the remodeling of the extracellular matrix in the ovaries.
Objective: This study aimed to evaluate the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 genes in the preantral follicles derived from vitrified mouse ovaries.
Materials and Methods: In this experimental study, the gene expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 in the isolated preantral follicles derived from fresh and vitrified ovaries of 14-16 days old female mice through real time qRT-PCR was evaluated. Developmental parameters, including survival rate, growth, antrum formation and metaphase II oocytes were also analyzed.
Results: The developmental parameters of fresh preantral follicles were significantly higher than vitrified preantral follicles. The TIMP-1 and MMP-9 expression levels showed no differences between fresh and vitrified preantral follicles (p=0.22, p=0.11 respectively). By contrast, TIMP-2 expression significantly decreased (p=0.00) and MMP-2 expression increased significantly (p=0.00) in vitrified preantral follicles compared with to fresh ones.
Conclusion: Changes in expression of MMP-2 and TIMP-2 after ovarian tissues vitrification is partially correlated with decrease in follicle development.
Full-Text [PDF 298 kb]   (768 Downloads) |   |   Full-Text (HTML)  (327 Views)  
Type of Study: Original Article |

References
1. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circul Res 2003; 92: 827-839. [DOI:10.1161/01.RES.0000070112.80711.3D]
2. Salehnia M, Abbasian Moghadam E, Rezazadeh Velojerdi M. Ultrastructure of follicles after vitrification of mouse ovarian tissue. Fertil Steril 2002; 78: 644-625. [DOI:10.1016/S0015-0282(02)03287-9]
3. Balbin M, Fueyo A, Lopez JM, Diez-Itza I, Velasco G, Lopez-Otin C. Expression of collagenase-3 in the rat ovary during the ovulatory process. J Endocrinol 1996; 149: 405-415. [DOI:10.1677/joe.0.1490405]
4. Bagavandoss P. Differential distribution of gelatinases and tissue inhibitor of metalloproteinase-1 in the rat ovary. J Endocrinol 1998; 158: 221- 228. [DOI:10.1677/joe.0.1580221]
5. Goldman S, Shalev E. MMPS and TIMPS in ovarian physiology and pathophysiology. Front Biosci 2004; 9: 2474-2483. [DOI:10.2741/1409]
6. Smith M, McIntush E, Ricke W, Kojima F, Smith G. Regulation of ovarian extracellular matrix remodelling by metalloproteinases and their tissue inhibitors: effects on follicular development, ovulation and luteal function. J Reprod Fertil 1999; 54: 367-381.
7. Ny T, Wahlberg P, Brändström IJ. Matrix remodeling in the ovary: regulation and functional role of the plasminogen activator and matrix metalloproteinase systems. Mol Cell Endocrinol 2002; 187: 29-38. [DOI:10.1016/S0303-7207(01)00711-0]
8. Curry TE Jr, Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocrine Rev 2003; 24: 428-465. [DOI:10.1210/er.2002-0005]
9. Curry TE Jr, Osteen KG. Cyclic changes in the matrix metalloproteinase system in the ovary and uterus. Biol Reprod 2001; 64: 1285-1296. [DOI:10.1095/biolreprod64.5.1285]
10. Edwards DR, Beaudry PP, Laing TD, Kowal V, Leco KJ, Leco PA, et al. The roles of tissue inhibitors of metalloproteinases in tissue remodelling and cell growth. Int J Obes 1996; 20 (Suppl.): S9-15.
11. Hagglund AC, Ny A, Leonardsson G, Ny T. Regulation and localization of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the mouse ovary during gonadotropin-induced ovulation. Endocrinology 1999; 140: 4351-4358. [DOI:10.1210/endo.140.9.7002]
12. Yu WH, Woessner JF Jr. Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 2000; 275: 4183-4191. [DOI:10.1074/jbc.275.6.4183]
13. Robinson LL, Sznajder NA, Riley SC, Anderson RA. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human fetal testis and ovary. Mol Hum Reprod 2001; 7: 641-648. [DOI:10.1093/molehr/7.7.641]
14. Imai K, Khandoker MA, Yonai M, Takahashi T, Sato T, Ito A, et al. Matrix metalloproteinases-2 and -9 activities in bovine follicular fluid of different-sized follicles: relationship to intra-follicular inhibin and steroid concentrations. Domest Animal Endocrinol 2003; 24: 171-183. [DOI:10.1016/S0739-7240(02)00235-7]
15. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochem Biophys Acta 2000; 1477: 267-283. [DOI:10.1016/S0167-4838(99)00279-4]
16. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 1997; 74: 111-122.
17. Chen S-U, Chien C-L, Wu M-Y, Chen T-H, Lai S-M, Lin C-W, et al. Novel direct cover vitrification for cryopreservation of ovarian tissues increases follicle viability and pregnancy capability in mice. Hum Reprod 2006; 21: 2794-2800. [DOI:10.1093/humrep/del210]
18. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Prot 2008; 3: 1101-1108. [DOI:10.1038/nprot.2008.73]
19. Vajta G, Kuwayama M. Improving cryopreservation systems. Theriogenology 2006; 65: 236-244. [DOI:10.1016/j.theriogenology.2005.09.026]
20. Choi J, Lee J-y, Lee E, Yoon B-K, Bae D, Choi D. Cryopreservation of the mouse ovary inhibits the onset of primordial follicle development. Cryobiology 2007; 54: 55-62. [DOI:10.1016/j.cryobiol.2006.11.003]
21. Newton H, Illingworth P. In-vitro growth of murine pre-antral follicles after isolation from cryopreserved ovarian tissue. Hum Reprod 2001; 16: 423-429. [DOI:10.1093/humrep/16.3.423]
22. Newton H. The cryopreservation of ovarian tissue as a strategy for preserving the fertility of cancer patients. Hum Reprod Update 1998; 4: 237-247. [DOI:10.1093/humupd/4.3.237]
23. Abdollahi M, Salehnia M, Salehpour S, Ghorbanmehr N. Human ovarian tissue vitrification/warming has minor effect on the expression of apoptosis-related genes. Iran Biomed J 2013; 17: 179- 186.
24. Hernandez-Barrantes S, Toth M, Bernardo MM, Yurkova M, Gervasi DC, Raz Y, et al. Binding of active (57 kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation. J Biol Chem 2000; 275: 12080-12089. [DOI:10.1074/jbc.275.16.12080]
25. Hatami S, Zavareh S, Salehnia M, Lashkarbolouki T, Ghorbanian MT, Karimi I. Total oxidative status of mouse vitrified pre-antral follicles with pre-treatment of alpha lipoic acid. Iran Biomed J 2014; 18: 181-188.
26. Hatami S, Zavareh S, Salehnia M, Lashkarbolouki T, Karimi I. Comparison of oxidative status of mouse pre-antral follicles derived from vitrified whole ovarian tissue and vitrified pre-antral follicles in the presence of alpha lipoic acid. J Obstet Gynaecol Res 2014; 40: 1680-1688. [DOI:10.1111/jog.12394]
27. Rahimi G, Isachenko E, Sauer H, Isachenko V, Wartenberg M, Hescheler J, et al. Effect of different vitrification protocols for human ovarian tissue on reactive oxygen species and apoptosis. Reprod Fertil Dev 2003; 15: 343-349. [DOI:10.1071/RD02063]
28. Cortvrindt R, Smitz J, Van Steirteghem AC. A morphological and functional study of the effect of slow freezing followed by complete in-vitro maturation of primary mouse ovarian follicles. Hum Reprod 1996; 11: 2648-2655. [DOI:10.1093/oxfordjournals.humrep.a019187]
29. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 2004; 131: 1619-1628. [DOI:10.1242/dev.01037]
30. Luvoni GC, Tessaro I, Apparicio M, Ruggeri E, Luciano AM, Modina SC. Effect of vitrification of feline ovarian cortex on follicular and oocyte quality and competence. Reprod Domest Anim 2012; 47: 385-391. [DOI:10.1111/j.1439-0531.2011.01885.x]
31. Okamoto T, Niu R, Yamada S. Increased expression of tissue inhibitor of metalloproteinase-2 in clear cell carcinoma of the ovary. Mol Hum Reprod 2003; 9: 569-575. [DOI:10.1093/molehr/gag074]
32. Kim SJ, Park JH, Lee JE, Kim JM, Lee JB, Moon SY, et al. Effects of type IV collagen and laminin on the cryopreservation of human embryonic stem cells. Stem Cells 2004; 22: 950-961. [DOI:10.1634/stemcells.22-6-950]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb