Volume 14, Issue 7 (7-2016)                   IJRM 2016, 14(7): 471-476 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Davoudi M, Zavareh S, Ghorbanian M T, Paylakhi S H, Mohebbi S R. The effect of steroid hormones on the mRNA expression of oct4 and sox2 in uterine tissue of the ovariectomized mice model of menopause. IJRM 2016; 14 (7) :471-476
URL: http://ijrm.ir/article-1-765-en.html
1- School of Biology, Damghan University, Damghan, Iran
2- School of Biology, Damghan University, Damghan, Iran , Zavareh.S@du.ac.ir
Abstract:   (2444 Views)
Background: The uterus is a dynamic tissue responding to hormonal changes during reproductive cycles. As such, uterine stem cells have been studied in recent years. Transcription factors oct4 and sox2 are critical for effective maintenance of pluripotent cell identity. 
Objective: The present research evaluated the mRNA expression of oct4 and sox2 in the uterine tissues of ovariectomized mice treated with steroid hormones. 
Materials and Methods: In this experimental study, adult virgin female mice were ovariectomized and treated with estradiol 17β (E2), progesterone (P4), and a combination of E2 and P4 (E2 & P4) for 5 days. Uterine tissues were removed, and immunofluorescent (IF) staining and quantitative real-time PCR of oct4 and sox2 markers were performed. 
Results: IF showed oct4 and sox2 expression in the uterine endometrium and myometrium among all groups. The mRNA expression of oct4 (p=0.022) and sox2 (p=0.042) in the E2-treated group significantly were decreased compared to that in the control group. By contrast, the mRNA expression of oct4 and sox2 in the P4 (p=0.641 and 0.489 respectively) and E2 & P4-treated groups (p=0.267 and 0.264 respectively) did not show significant differences compared to the control group. 
Conclusion: The results indicate ovarian steroid hormones change the expression of oct4 and sox2 in the mice uterine tissues, which suggest the involvement of steroid hormonal regulation in uterine stem cells.
Full-Text [PDF 235 kb]   (637 Downloads) |   |   Full-Text (HTML)  (393 Views)  
Type of Study: Original Article |

References
1. Gargett CE, Chan RW, Schwab KE. Endometrial stem cells. Curr Opin Obstet Gynecol 2007; 19: 377-383. [DOI:10.1097/GCO.0b013e328235a5c6]
2. Jabbour HN, Kelly RW, Fraser HM, Critchley HO. Endocrine regulation of menstruation. Endocrine Rev 2006; 27: 17-46. [DOI:10.1210/er.2004-0021]
3. McLennan CE, Rydell AH. Extent of endometrial shedding during normal menstruation. Obstet Gynecol 1965; 26: 605-621.
4. Hunt SM, Clarke CL. Expression and hormonal regulation of the Sox4 gene in mouse female reproductive tissues. Biol Reprod 1999; 61: 476-481. [DOI:10.1095/biolreprod61.2.476]
5. Riesewijk A, Martin J, van Os R, Horcajadas JA, Polman J, Pellicer A, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod 2003; 9: 253-264. [DOI:10.1093/molehr/gag037]
6. Martin J, Dominguez F, Avila S, Castrillo JL, Remohi J, Pellicer A, et al. Human endometrial receptivity: gene regulation. J Reprod Immunol 2002; 55: 131-139. [DOI:10.1016/S0165-0378(01)00140-1]
7. Navot D, Anderson TL, Droesch K, Scott RT, Kreiner D, Rosenwaks Z. Hormonal manipulation of endometrial maturation. J Clin Endocrinol Metab 1989; 68: 801-807. [DOI:10.1210/jcem-68-4-801]
8. Graham JD, Clarke CL. Physiological Action of Progesterone in Target Tissues. Endocrine Rev 1997; 18: 502-519. [DOI:10.1210/er.18.4.502]
9. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70: 1738-1750. [DOI:10.1095/biolreprod.103.024109]
10. Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J 1990; 9: 2185-2195.
11. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95: 379-391. [DOI:10.1016/S0092-8674(00)81769-9]
12. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet 2000; 24: 372-376. [DOI:10.1038/74199]
13. Pesce M, Scholer HR. Oct-4: control of totipotency and germline determination. Mol Reprod Dev 2000; 55: 452-457. https://doi.org/10.1002/(SICI)1098-2795(200004)55:4<452::AID-MRD14>3.0.CO;2-S [DOI:10.1002/(SICI)1098-2795(200004)55:43.0.CO;2-S]
14. Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 2003; 4: 361-370. [DOI:10.1016/S1535-6108(03)00270-8]
15. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biol 2007; 9: 625-635. [DOI:10.1038/ncb1589]
16. Otsubo T, Akiyama Y, Yanagihara K, Yuasa Y. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer 2008; 98: 824-831. [DOI:10.1038/sj.bjc.6604193]
17. Go MJ, Takenaka C, Ohgushi H. Forced expression of Sox2 or Nanog in human bone marrow derived mesenchymal stem cells maintains their expansion and differentiation capabilities. Exp Cell Res 2008; 314: 1147-1154. [DOI:10.1016/j.yexcr.2007.11.021]
18. Keramari M, Razavi J, Ingman KA, Patsch C, Edenhofer F, Ward CM, et al. Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PloS One 2010; 5: e13952. [DOI:10.1371/journal.pone.0013952]
19. Du H, Taylor HS. Stem cells and female reproduction. Reprod Sci 2009; 16: 126-139. [DOI:10.1177/1933719108329956]
20. Gargett CE, Chan RW, Schwab KE. Hormone and growth factor signaling in endometrial renewal: role of stem/progenitor cells. Mol Cell Endocrinol 2008; 288: 22-29. [DOI:10.1016/j.mce.2008.02.026]
21. Caligioni CS. Assessing reproductive status/stages in mice. Curr Protoc Neurosci 2009; Appendix 4: Appendix 4I.
22. Westwood FR. The female rat reproductive cycle: a practical histological guide to staging. Toxicol Path 2008; 36: 375-384. [DOI:10.1177/0192623308315665]
23. Stewart CA, Fisher SJ, Wang Y, Stewart MD, Hewitt SC, Rodriguez KF, et al. Uterine gland formation in mice is a continuous process, requiring the ovary after puberty, but not after parturition. Biol Reprod 2011; 85: 954-964. [DOI:10.1095/biolreprod.111.091470]
24. Martin L, Pollard JW, Fagg B. Oestriol, oestradiol-17beta and the proliferation and death of uterine cells. J Endocrinol 1976; 69: 103-115. [DOI:10.1677/joe.0.0690103]
25. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update 2007; 13: 87-101. [DOI:10.1093/humupd/dml045]
26. Maruyama T, Masuda H, Ono M, Kajitani T, Yoshimura Y. Human uterine stem/progenitor cells: their possible role in uterine physiology and pathology. Reproduction 2010; 140: 11-22. [DOI:10.1530/REP-09-0438]
27. Davoudi M, Zavareh S, Ghorbanian MT, Hassanzadeh H. Effects of steroid hormones on uterine tissue remodeling of mouse menopause model. J Paramed Sci 2015; 6: 65-71.
28. Tibbetts TA, Mendoza-Meneses M, O'Malley BW, Conneely OM. Mutual and intercompartmental regulation of estrogen receptor and progesterone receptor expression in the mouse uterus. Biol Reprod 1998; 59: 1143-1152. [DOI:10.1095/biolreprod59.5.1143]
29. Jung JW, Park SB, Lee SJ, Seo MS, Trosko JE, Kang KS. Metformin represses self-renewal of the human breast carcinoma stem cells via inhibition of estrogen receptor-mediated OCT4 expression. PloS One 2011; 6: e28068. [DOI:10.1371/journal.pone.0028068]
30. Wood GA, Fata JE, Watson KL, Khokha R. Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus. Reproduction 2007; 133: 1035-1044. [DOI:10.1530/REP-06-0302]
31. Pawluski JL, Brummelte S, Barha CK, Crozier TM, Galea LA. Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front Neuroendocrinol 2009; 30: 343- 357. [DOI:10.1016/j.yfrne.2009.03.007]
32. Hyodo S, Matsubara K, Kameda K, Matsubara Y. Endometrial injury increases side population cells in the uterine endometrium: a decisive role of estrogen. Tohoku J Exp Med 2011; 224: 47-55. [DOI:10.1620/tjem.224.47]
33. Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocrine Rev 1997; 18: 502-519. [DOI:10.1210/er.18.4.502]
34. Martin L, Finn CA, Trinder G. Hypertrophy and hyperplasia in the mouse uterus after oestrogen treatment: an autoradiographic study. J Endocrinol 1973; 56: 133-144. [DOI:10.1677/joe.0.0560133]
35. Tong W, Pollard JW. Progesterone inhibits estrogen-induced cyclin D1 and cdk4 nuclear translocation, cyclin E- and cyclin A-cdk2 kinase activation, and cell proliferation in uterine epithelial cells in mice. Mol Cell Biol 1999; 19: 2251-2264. [DOI:10.1128/MCB.19.3.2251]
36. Finn CA, Martin L. The role of the oestrogen secreted before oestrus in the preparation of the uterus for implantation in the mouse. J Endocrinol 1970; 47: 431-438. [DOI:10.1677/joe.0.0470431]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb