Volume 12, Issue 3 (4-2014)                   IJRM 2014, 12(3): 199-204 | Back to browse issues page

XML Persian Abstract Print


1- Department of Biology and Anatomical Sciences, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2- Neurobiomedical Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , sun_beluga @yahoo.com
3- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Abstract:   (2421 Views)
Background: Ovarian tissue transplantation is emerging technologies for fertility preservation. In addition, in vitro maturation (IVM) of oocytes retrieved from ovarian tissues may overcome the fertility defects in certain cases.
Objective: The aim was to evaluate the best site for ovarian tissue transplantation in mice. Also, feasibility of IVM of oocytes retrieved from auto grafted ovarian tissues was freshly assessed.
Materials and Methods: Hemi-ovaries from 6 weeks old mice were auto grafted into kidney capsule (K) versus the back muscle (B) and leg muscle (L) in a mouse auto graft model which was stimulated with gonadotrophins. Then ovarian grafts were recovered and processed histologically for follicle assessment compared with control, also the ability of oocytes to mature with IVM was studied 14 days after transplantation.
Results: Total follicle count was significantly higher in K-graft (3.5±3.17) and the antral follicles were only observed in K-site model. The number of retrieved immature oocytes as well as successful IVM in K-grafts was significantly higher than other groups (p=0.008, p=0.016).
Conclusion: The kidney capsule is a promising site for ovarian tissue auto graft in mice. This resulted in better follicular survival and IVM outcomes.
Full-Text [PDF 212 kb]   (596 Downloads) |   |   Full-Text (HTML)  (394 Views)  
Type of Study: Original Article |

References
1. Soleimani R, Heytens E, Van den Broecke R, Rottiers I, Dhont M, Cuvelier CA, et al. Xenotransplantation of cryopreserved human ovarian tissue into murine back muscle. Hum Reprod 2010; 25: 1458-1470. [DOI:10.1093/humrep/deq055]
2. Liu L, Wood GA, Morikawa L, Ayearst R, Fleming C, McKerlie C. Restoration of fertility by orthotopic transplantation of frozen adult mouse ovaries. Hum Reprod 2008; 23: 22-128.
3. Torrents E, Boiso I, Barri PN, Veiga A. Applications of ovarian tissue transplantation in experimental biology and medicine. Hum Reprod Update 2003; 9: 471-481. [DOI:10.1093/humupd/dmg036]
4. Liu J, Van der Elst J, Van den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod 2002; 17: 605-611. [DOI:10.1093/humrep/17.3.605]
5. Soleimani R, Van der Elst J, Heytens E, Van den Broecke R, Gerris J, Dhont M, et al. Back muscle as a promising site for ovarian tissue transplantation, an animal model. Hum Reprod 2008; 23: 619-626. [DOI:10.1093/humrep/dem405]
6. Terazono T, Inoue M, Kaedei Y, Tanihara F, Namula Z, Viet VL, et al. Assessment of canine ovaries autografted to various body sites. Therioenology 2012; 77: 131-138. [DOI:10.1016/j.theriogenology.2011.07.026]
7. Dath C, Van Eyck AS, Dolmans MM, Romeu L, Delle Vigne L, Donnez J, et al. Xenotransplantation of human ovarian tissue to nude mice: comparison between four grafting sites. Hum Reprod 2010; 25: 1734-1743. [DOI:10.1093/humrep/deq131]
8. Yang HY, Cox SL, Jenkin G, Findlay J, Trounson A, Shaw J. Graft site and gonadotrophin stimulation influences the number and quality of oocytes from murine ovarian tissue grafts. Reproduction 2006; 131: 851-859. [DOI:10.1530/rep.1.00916]
9. von Schonfeldt V, Chandolia R, Kiesel L, Nieschlag E, Schlatt S, Sonntag B. Advanced follicle development in xenografted prepubertal ovarian tissue: the common marmoset as a nonhuman primate model for ovarian tissue transplantation. Fertil Steril 2011; 95: 1428-1434. [DOI:10.1016/j.fertnstert.2010.11.003]
10. Terazono T, Kaedei Y, Tanihara F, Namula Z, Viet V, Takagi M, et al. Follicle Formation in the Canine Ovary After Autografting to a Peripheral Site. Reprod Domest Anim 2012; 47: 16-21. [DOI:10.1111/j.1439-0531.2011.01880.x]
11. Liu J, Van der Elst J, Van den Broecke R, Dhont M. Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation. Biol Reprod 2001; 64: 171-178. [DOI:10.1095/biolreprod64.1.171]
12. Li S, Qin BL, Li WL, Shi ZD, Tian YB, Chen XJ. Offspring from heterotopic transplantation of newborn mice ovaries. Reprod Domest Anim 2009; 44: 764-770. [DOI:10.1111/j.1439-0531.2008.01069.x]
13. Silber SJ. Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod 2012; 18: 59-67. [DOI:10.1093/molehr/gar082]
14. Soleimani R, Heytens E, Van den Broecke R, Rottiers I, Dhont M, Cuvelier CA, et al. Xenotransplantation of cryopreserved human ovarian tissue into murine back muscle. Hum Reprod 2010; 25: 1458-1470. [DOI:10.1093/humrep/deq055]
15. Deleuze S, Goudet G, Caillaud M, Lahuec C, Duchamp G. Efficiency of embryonic development after intrafollicular and intraoviductal transfer of in vitro and in vivo matured horse oocytes. Therioenology 2009; 72: 203-209. [DOI:10.1016/j.theriogenology.2009.02.001]
16. Nazari S, Khalili M, Esmaielzadeh F, Mohsenzadeh M. Maturation capacity, morphology and morphometric assessments of human immature oocytes after vitrification and in vitro maturation. Iran J Reprod Med 2011; 9: 209-216.
17. Mohsenzadeh M, Khalili M, Nazari S, Hemayatkhah Jahromi V, Agharahimi A, Halvaei I. Effect of vitrification on morphology and in-vitro maturation outcome of human immature oocytes. Ital J Anat Embryol 2012; 117: 190-198.
18. Abir R, Nitke S, Ben-Haroush A, Fisch B. In vitro maturation of human primordial ovarian follicles: Clinical significance, progress in mammals, and methods for growth evaluation. Histol Histopathol 2006; 21: 887-898.
19. Dissen GA, Lara HE, Fahrenbach WH, Costa ME, Ojeda SR. Immature rat ovaries become revascularized rapidly after autotransplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression. Endocrinology 1994; 134: 1146-1154. [DOI:10.1210/endo.134.3.8119153]
20. Li F, Tao Y, Zhang Y, Li Y, Fang F, Liu Y, et al. Follicle growth and oocyte development after ovary transplantation into back muscle of immune-intact adult castrated male mice. Reproduction 2010; 140: 465-476. [DOI:10.1530/REP-10-0076]
21. Kagawa N, Sakurai Y, Miyano T, Manabe N. Effects of long-term grafting on follicular growth in porcine ovarian cortical grafts xenoplanted to severe combined immunodeficient (SCID) mice. J Reprod Dev 2005; 51: 77-85. [DOI:10.1262/jrd.51.77]
22. Kaneko H, Kikuchi K, Noguchi J, Hosoe M, Akita T. Maturation and fertilization of porcine oocytes from primordial follicles by a combination of xenografting and in vitro culture. Biol Reprod 2003; 69: 1488-1493. [DOI:10.1095/biolreprod.103.017038]
23. Cleary M, Paris MC, Shaw J, Jenkin G, Trounson A. Effect of ovariectomy and graft position on cryopreserved common wombat (Vombatus ursinus) ovarian tissue following xenografting to nude mice. Reprod Fertil Dev 2003; 15: 333-342. [DOI:10.1071/RD03063]
24. Reynaud K, Driancourt MA. Oocyte maturation. Mol Cell Endocrinol 2000; 163: 101-108. [DOI:10.1016/S0303-7207(99)00246-4]
25. Dolmans MM, Martinez-Madrid B, Gadisseux E, Guiot Y, Yuan WY, Torre A and et al. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction 2007; 134: 253-262. [DOI:10.1530/REP-07-0131]
26. Israely T, Nevo N, Harmelin A, Neeman M, Tsafriri A. Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum Reprod 2006; 21: 1368-1379. [DOI:10.1093/humrep/del010]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.