دوره 15، شماره 10 - ( 9-1396 )                   جلد 15 شماره 10 صفحات 648-641 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golshan Iranpour F, Fazelian K, Dashti G R. Thymoquinone as a natural spermostatic substance in reproductive medicine: An experimental study. IJRM 2017; 15 (10) :641-648
URL: http://ijrm.ir/article-1-871-fa.html
گلشن ایرانپور فرهاد، فاضلیان خاطره، دشتی غلامرضا. تیموکینون ماده ای طبیعی و متوقف کننده حرکت اسپرم در طب باروری: یک مطالعه تجربی. International Journal of Reproductive BioMedicine. 1396; 15 (10) :641-648

URL: http://ijrm.ir/article-1-871-fa.html


1- گروه علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران
2- گروه علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران ، dashti@med.mui.ac.ir
چکیده:   (3874 مشاهده)
مقدمه: نونوکسینول 9 یک سورفاکتانت غیر یونی است که بخاطر اثرات کشندگی آن بر اسپرم بطور وسیع مورد استفاده است. بدلیل آنکه نونوکسینول 9 ممکن است سبب تخریب احتمالی بافت­های پوششی دستگاه تناسلی زن شود، یافتن ترکیبات جدید متوقف­کننده حرکت اسپرم ضروری است.
هدف: هدف از این مطالعه ارزیابی اثرات تیموکینون به عنوان یک ماده بالقوه متوقف کننده حرکت اسپرم، بر روی حرکت و بقا اسپرم انسان بود.
موارد و روش­ها: در این مطالعه تجربی، اثرات مقادیر 5، 10، 20، 50، 100 میکروگرم بر میلی­لیتر، 1 و 10 میلی­گرم بر لیتر تیموکینون بر نمونه­های مایع منی نوروموزواسپرم مورد بررسی قرار گرفت. تحرک و بقا اسپرمی در کسرهایی از نمونه مایع منی که فاقد و یا حاوی تیموکینون بودند، مقایسه شدند. 32 نمونه مایع منی جهت ارزیابی اثرات تیموکینون بر تغییرات غشاء میتوکندری تحت تاثیر 50 میکروگرم بر میلی­لیتر تیموکینون قرار گرفتند. بررسی فلوسیتومتری پس از رنگ آمیزی اسپرم­ها با  JC-1انجام پذیرفت.
نتایج: مقادیر بالای 20 میکروگرم بر میلی­لیتر تیموکینون تمامی اسپرمها را بالاخره در محیط کشت متوقف می­کنند. افزودن میزان 50 میکروگرم بر میلی­لیتر تیموکینون، درصد اسپرم­های زنده را بطور معنی­دار کاهش نمی­دهد و نتایج فلوسیتومتری نشانگر آن هستند که این میزان از تیموکینون می­تواند پتانسیل غشاء داخلی میتوکندری را کاهش دهد.
نتیجه­ گیری: تیموکینون می­تواند بدون کاهش جمعیت اسپرم­های زنده، حرکت اسپرم­ها را در محیط کشت متوقف نماید. بنابراین، تیموکینون را می­توان به عنوان یک ماده شیمیایی جدید طبیعی که توانایی بالقوه در متوقف کردن اسپرم­ها دارد، مورد توجه قرار داد.
نوع مطالعه: Original Article |

فهرست منابع
1. Wilkinson D, Tholandi M, Ramjee G, Rutherford GW. Nonoxynol-9 spermicide for prevention of vaginally acquired HIV and other sexually transmitted infections: systematic review and meta-analysis of randomized controlled trials including more than 5000 women. Lancet Infect Dis 2002; 2: 613-617. [DOI:10.1016/S1473-3099(02)00396-1]
2. Van Damme L, Ramjee G, Alary M, Vuylsteke B, Chandeying V, Rees H, et al. Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial. Lancet 2002; 360: 971-977. [DOI:10.1016/S0140-6736(02)11079-8]
3. Ragheb A, Attia A, Eldin WS, Elbarbry F., Gazarin S, Shoker A. The protective effect of thymoquinone, an anti-oxidant and anti-inflammatory agent, against renal injury: a review. Saudi J Kidney Dis Transpl 2009; 20: 741-752.
4. Al-Zahrani S, Mohany M, Kandeal S, Badr G. Thymoquinone and vitamin E supplementation improve the reproductive characteristics of heat stressed male mice. J Med Plants Res 2012; 6: 493-499. [DOI:10.5897/JMPR11.1252]
5. Saheera K, Sha'ban M, Abdul Rahman S. Effects on mouse spermatogenesis and DNA fragmentation following exposure to cyclophosphamide and thymoquinone. Eur Int J Sci Technol 2013; 2: 119-136.
6. Kanter M. Thymoquinone reestablishes spermatogenesis after testicular injury caused by chronic toluene exposure in rats. Toxicol Ind Health 2011; 27: 155-166. [DOI:10.1177/0748233710382541]
7. Lina S, Hashida NH, Eliza H. Role of Habbatus sauda towards the histological features of nicotine treated male rats seminal vesicle and prostate gland. Biomed Res 2014; 25: 11-18.
8. Hughes LM, Griffith R, Carey A, Butler T, Donne SW, Beagley KW, et al. The spermostatic and microbicidal actions of quinones and maleimides: toward a dual-purpose contraceptive agent. Mol Pharmacol 2009; 76: 113-124. [DOI:10.1124/mol.108.053645]
9. Alhimaidi AR. Thymoquinone treatment of intracytoplasmic sperm injection (ICSI) compared to in vitro fertilization of mice oocytes and their development in vitro. Adv Mol Med 2005; 1: 119-123.
10. Kamarzaman S, Wahab AY, Rahman SA. Effects of thymoquinone supplementation on cyclophosphamide toxicity of mouse embryo in vitro. Glob Vet 2014; 12: 80-90. 11. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th Ed. World health organization publication, china; 2010.
11. Jamalzadeh L, Ghafoori H, Sariri R, Rabuti H, Nasirzade J, Hasani H, et al. Cytotoxic effects of some common organic solvents on MCF-7, RAW-264.7 and human umbilical vein endothelial cells. Avicenna J Med Biochem 2016; 4 e33453. [DOI:10.17795/ajmb-33453]
12. Hossain S, Sikes-Thurston E, Leppla SH, Wein AN. Thymoquinone as a novel antibiotic and chemotherapeutic agent: a natural therapeutic approach on Staphylococcus aureus, Bacillus anthracis, and four NCI-60 cancer cell lines. J Exp Second Sci 2012; 19: 1-4.
13. Guthrie HD, Welch GR. Effects of reactive oxygen species on sperm function. Theriogenology 2012; 78: 1700-1708. [DOI:10.1016/j.theriogenology.2012.05.002]
14. Gali-Muhtasib HU, Kheir WG, Kheir LA, Darwiche N, Crooks PA. Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs 2004; 15: 389-399. [DOI:10.1097/00001813-200404000-00012]
15. Banerjee S, Kaseb AO, Wang Z, Kong D, Mohammad M, Padhye S, et al. Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res 2009; 69: 5575-5583. [DOI:10.1158/0008-5472.CAN-08-4235]
16. Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, et al. Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr Cancer 2010; 62: 938-946. [DOI:10.1080/01635581.2010.509832]
17. Malkovsky M, Newell A, Dalglish AG. Inactivation of HIV by Nonoxynol-9. Lancet 1988; 1: 645. [DOI:10.1016/S0140-6736(88)91440-7]
18. Azeiz AZ A, Saad AH, Darweesh MF. Efficacy of Thymoquinone against Vaginal Candidiasis in Prednisolone-induced Immunosuppressed Mice. J Am Sci. 2013; 9: 155-159.
19. Rooney S, Ryan MF. Effects of Alpha-hederin and thymoquinone, constituents of Nigella sativa on human cancer cell lines. Anticancer Res 2005; 25: 2199-2204.
20. Gali-Muhtasib HU, Abou Kheir WG, Kheir LA, Darwiche N, Crooks PA. Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anti-cancer Drugs 2004; 15: 389-399. [DOI:10.1097/00001813-200404000-00012]
21. Worthen DR, Ghosheh OA, Crooks PA. The in vitro anti-tumor activity of some crude and purified components of black seed, Nigella sativa L. Anticancer Res 1997; 18: 1527-1532.
22. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003; 17: 299-305. [DOI:10.1002/ptr.1309]
23. Forouzanfar F, Bazzaz BS, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 2014; 17: 929-938.
24. Tonkal A. In vitro antitrichomonal effect of Nigella sativa aqueous extract and wheat germ agglutinin. Med Sci 2009; 16: 17-34. [DOI:10.4197/Med.16-2.2]
25. Ruiz-Pesini E, Diez C, Lape-a AC, Pérez-Martos A, Montoya J, Alvarez E, et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem 1998; 44:1616-1620.
26. Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, et al. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biology-Anim 2016; 52: 953-960. [DOI:10.1007/s11626-016-0061-x]
27. Barroso G, Taylor S, Morshedi M, Manzur F, Gavi-o F, Oehninger S. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril 2006; 85: 149-154. [DOI:10.1016/j.fertnstert.2005.06.046]
28. Kasai T, Ogawa K, Mizuno K, Nagai S, Uchida Y, Ohta S, et al. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian J Androl 2002; 4: 97-104.
29. Paoli D, Gallo M, Rizzo F, Baldi E, Francavilla S, Lenzi A, et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil Steril 2011; 95: 2315-2319. [DOI:10.1016/j.fertnstert.2011.03.059]
30. Piasecka M, Kawiak J. Sperm mitochondria of patients with normal sperm motility and with asthenozoospermia: morphological and functional study. Folia Histochem Cytobiol 2003; 41: 125-139.
31. Sousa AP, Amaral A, Baptista M, Tavares R, Caballero Campo P, Caballero Peregrín P, et al. Not all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PloS One 2011; 6: e18112. [DOI:10.1371/journal.pone.0018112]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به International Journal of Reproductive BioMedicine می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb