9th Yazd International Congress and Student Award on Reproductive Medicine with 4th Congress of Reproductive Genetics

Poster Presentations

P-45

In vitro mouse spermatogenesis on artificial testis engineered by 3D printing of extracellular matrix

Bashiri Nahangi $\mathbb{Z}^{1,\,2}$, Amiri $\mathbb{I}^{3,\,4}$, Gholipourmalekabadi $\mathbb{M}^{5,\,6}$, Falak \mathbb{R}^7 , Asgari $\mathbb{H}^{1,\,2}$, Koruji $\mathbb{M}^{1,\,2}$.

- 1.Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- 2.Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- 3.Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- 4. Endometrium and Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- 5. Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- 6.Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- 7.Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.

Email: koruji.m@iums.ac.ir

Background: Male infertility accounts for about 50% of all infertility cases, and 25 % of infertile men are azoospermic. Due to the very small number of spermatogonia stem cells (SSCs) in testicular tissue biopsy specimens, SSCs culture for infertile patients can be important.

Objective: The proliferation of SSCs on printed scaffold derived from the extracellular matrix (ECM) of testicular tissues evaluated.

Materials and Methods: Ram testicular tissue was decellularized using hypertonic solution -Triton X-100

for 30 min. The extracted ECM (5% ratio) was used as a bio-ink for the fabrication of artificial testes along with alginate and gelatin. Testicular cells were then isolated from the testes of 3-7 days old neonate mice after enzymatic digestion. The nature of SSCs was confirmed by flow cytometry and RT-PCR for specific markers Plzf, Id4, Gfr α 1, and Prm1. Finally, cell viability evaluated using MTT test and testicular cell proliferation process on printed alginate-gelatin scaffolds (group I) and ECM-alginate-gelatin scaffolds (group II) using immunocytochemistry, flow cytometry, and real-time PCR techniques was assessed.

Results: The MTT test indicated that the cell viability on the composite scaffold was significantly higher than the hybrid scaffolds and control group (p > 0.05). The results of 2 wk of proliferation on the printed system showed that the expression of *Plzf, Id4, Gfra1* gene using real-time PCR in group II was significantly higher than group I (p > 0.05). Flow cytometry analysis also showed that the number of Plzf-positive cells in group II was significantly higher than group I (p > 0.05). Immunocytochemistry results confirmed that Plzf, Id4, and Gfra1 markers were expressed in both groups, but their expression in group II was significantly higher than group I (p > 0.05).

Conclusion: We concluded that the culture of testicular cells on scaffolds containing ECM increases the viability, colonization, and proliferation of SSCs and achieves a high number of cells for differentiation in vitro. Therefore, 3D printing using the ECM of the testis can be an ideal strategy for the regeneration of seminiferous tubules.

Key words: Spermatogonia stem cells, Extracellular matrix, 3D printing, Proliferation.