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The male factor contributes to 50% of infertility. The cause of male infertility is
idiopathic and could be congenital or acquired. Among different factors which are
involved in idiopathic male infertility, genetic factors are the most prevalent causes
of the disease. Considering, the high prevalence of male infertility in Iran and the
importance of genetic factors in the accession of it, in this article we reviewed the
various studies which have been published during the last 17 yr on the genetic basis
of male infertility in Iran. To do this, the PubMed and Scientific information
database (SID) were regarded for the most relevant papers published in the last 17 yr
referring to the genetics of male factor infertility using the keywords ‘‘genetics’’,
“cytogenetic”, ‘‘male infertility”, and “Iranian population”. Literatures showed that
among the Iranian infertile men Yq microdeletion and chromosomal aberrations are
two main factors that intervene in the genetics of male infertility. Also, protamine
deficiency (especially P2) is shown to have an influence on fertilization rate and
pregnancy outcomes. The highest rate of sperm DNA damages has been found
among the asthenospermia patients. In several papers, the relation between other
important factors such as single gene mutations and polymorphisms with male
infertility has also been reported. Recognition of the genetic factors that influence
the fertility of Iranian men will shed light on the creation of guidelines for the
diagnosis, consultation, and treatment of the patients."
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Introduction

Ithough there have been great
Aachievements in medical sciences
especially in reproductive sciences,

infertility is still one of the major concern for
young couples. Normally, 80-85% of
unprotected intercourses in couples intending
to have kids will end in pregnancy. It is
estimated that 15% of couples attempting their
first pregnancy may experience difficulty in
conceiving. Infertility is actually a multifactorial
problem in  which different genetics,
environmental, and anatomic factors can be
influential. Studies have shown that 50% of
infertilities are related to men (1). Several
reasons were proposed for male infertility
including anti-sperm antibody production,
defective delivery of sperm, obstruction of
seminal tract, etc.; among these, 40-90% of
male infertilities are said to be related to
impaired spermatogenesis, which is a
significant rate (2). Semen analysis of men
suffering from impaired spermatogenesis

shows abnormal semen parameters
manifested as azoospermia, oligozoospermia,
theratozoospermia, and asthenozoospermia.
Among these, genetic factors are the most
important factors in male infertility, affecting
wide physiological processes such as
hormonal homeostasis, spermatogenesis, and
guality of sperms (1). Up to now, about 200
genes have been detected which can control
spermatogenesis, among which 30 genes are
located on Y chromosome. Two important
genetics factors in men infertilities are Y
chromosome microdeletions and
chromosomal abnormalities; although there
are other factors such as protamine
deficiency, sperm DNA damage, single gene
mutation, etc. Knowing this fact and
considering eminent advances in treating
infertility by using assisted reproductive
technique (ART), such as in vitro fertilization
(IVF) and intra-cytoplasmic sperm injection
(ICSl) which increase the possibility of
transition of genetic abnormalities to next
generations, detection of these genetics
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abnormalities would be valuable, in order to
help infertile couples (3, 4). Infertility in Iran is
also known as one of the major concerns of
young couples. It is estimated that around
20.2 % of Iranian couples are infertile which is
far more than the universal rate (12-15%));
70% of infertilities were reported to be related
to male factor (3). Since the genetics is one of
the critical factors causing male infertility, in
this article we are going to review the
researches done in Iran on the genetics of
male infertility.

Chromosome abnormality studies

The prevalence of chromosome
abnormalities  including  numerical and
structural aberrations (balanced and
robertsonian  translocations, duplications,
deletions, inversions, etc.) in infertile men has
been reported to be between 2-16% (5) which
is much higher than the general population
with the frequency around 0.6% (6). The
incidence of chromosomal aberrations
increase with the severity of infertility; this has
been reported to be 6% in oligozoospermia
and 14% in non-obstructive azoospermic
(NOA) males (7). Consequently, chromosome
aberrations  analysis (karyotyping) is
recommended as part of the infertility workup,
if the infertile couple had experienced
repeated spontaneous abortions or the semen
analysis of the male partner was abnormal. In
this case, several studies have been
performed in order to ascertain the occurrence
of chromosomal aberrations among Iranian
males suffering from infertility. Reviewing the
literature on the prevalence of chromosomal
abnormalities among Iranian infertile men has
indicated different frequencies ranging from
3.6-16.7% (8-13) which is within the range of
chromosomal aberrations in infertile men
reported worldwide, except for a paper
published by Azimi and colleagues, in which
they found out a much higher frequency of
chromosomal aberrations (32.81%) among
the patients. The authors believed that the
highly selected patients-group, in their
research might be responsible for this
discrepancy (12). In studies in which the
patients were categorized according to the
semen parameters, the highest frequency of
abnormal karyotypes, as expected, was found
among patients with azoospermia, which
ranged from 10-20% (10-13).

Since sex chromosome aberrations
(numerical or structural alteration in X and Y
chromosomes) are the most prevalent
chromosome-related causes of infertility
studying the frequency of these anomalies in
infertile patients would be valuable; because
by having these data physicians or genetics
counselors can decide whether it is needed to
order a cytogenetic test or not, which can help
to save both time and money. Regarding the
results of papers, 47,XXY, Klinefelter
syndrome (KFS) was found to be the most
frequent chromosomal anomaly (8.5-33.5%)
among Iranian infertile men (8-12); while
Salahshourifar and coworkers detected only
one patient with KFS (0.1%) among 863
infertle men (6). In another paper, the
frequency of sex chromosome aneuploidy
(SCA) in blood samples of patients (male and
female) from south of Iran was evaluated by
Jouyan and coworkers (10). Their results
suggested that 5.54% of cases have
chromosomally abnormal karyotype, from
which 30% was found to have SCA, including
46% of Turner's syndrome and 46% of KFS
and the remaining, other sex chromosome
abnormalities. The rate of SCA in this study
was lower than what was expected. It was
mentioned that this discrepancy might be due
to different factors such as genetics or
environmental background.

One of the structural chromosome
aberrations which frequently occur is the
pericentric inversion of the chromosome 9.
Although  this  abnormality is  usually
considered as a normal variant, an
association of this inversion with subfertility,
recurrent  spontaneous  abortions, and
abnormal clinical phenotypes has been
reported by several authors (14-17).

In this case, Khaleghian and Azimi have
reported a rare case with homozygosity for
pericentric inversions of chromosome 9 in a
woman with 28 wk stillbirth, while both of her
parents were heterozygotes for the inversions
of chromosome 9 (16). Since these authors
did not show any phenotypic abnormality, it
was not clear whether the chromosome 9
inversion were responsible for the stillbirth or
not. On the other hand, Mozdarani and
colleagues have proposed a possible
relationship between male infertility and
inversion of chromosome 9 (17). After
chromosomal analysis of 300 infertile couples,
these investigators showed a total frequency
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of 2.5% for chromosome 9 inversion, which
was higher compared to normal population
and even to female patients (17). In 2013,
Ghazaey et al showed a pericentric inversion
of chromosome 9 in 5% of patients with
recurrent spontaneous abortion (RSA) (11).
ART is used to circumvent human infertility.
Several studies have shown different ranges
of chromosomal abnormalities in infertile
couples attending ART (18). In order to
evaluate the prevalence and the type of these
chromosomal abnormalities in Iranian couples
who were candidates for assisted reproductive
techniques, Salahshourifar and coworkers
performed a cytogenetic analysis on the blood
samples of 1726 candidate patients (863 men
and 863 women) which revealed a total of 107
aberrant  karyotypes (6.2%) (7). The
frequencies of total abnormalities were 3.6%
for men and 8.8% for women. There was also
seen a high frequency of chromosomal
abnormalities among couples with
reproductive failure and a higher frequency of
aberrations in women compared to men.
Although the frequency of translocations was
similar in both sexes, but the incidence of
inversions was higher in men compared to
women. Sex chromosome mosaicism in
women was found to be higher than men (7).
ICSI is an efficient procedure which allows
an infertile couple, especially in severe male
factor cases to overcome their infertility. But
regarding a threefold increased risk of sperm
aneuploidy in infertile men and even up to 10-
fold in the case of severe infertilities (19, 20)
which might transmit to the next generation,
there is a great concern about a possible
increased risk of producing aneuploid
embryos, as well as aneuploid offspring,
particularly for sex chromosomes (21).
Consequently, the direct analysis of the
human gametes nuclei would be valuable in
order to evaluate the occurrence of these
abnormalities. In this case, spermatozoa of
normal and infertile men have been studied
cytogenetically by Hamster oocyte penetration
assay, and further by molecular cytogenetic
methods such as fluorescence in situ
hybridization (FISH) and Primed in situ
labelling (PRINS) assays (22, 23). In Iran, the
first cytogenetic studies on spermatozoa were
presented by Mozdarani and Aghdaei, in
which the incidence of sperm premature
chromosome condensation (PCC) in the failed
fertilized oocytes following IVF and ICSI

procedure was evaluated (24, 25). The results
illustrated a high frequency of intact sperm
head and sperm PCC in the failed fertilized
oocytes, following Giemsa staining. On the
other hand, the numbers of intact sperm
heads, as well as PCC of the sperm, were
higher in ICSI procedure compared to IVF.
They concluded that other factors such as the
failure of oocyte activation or an immature
retrieval of oocytes were more related to
above abnormalities than sperm anomalies
(25).

Mohseni and Mozdarani presented the first
study in Iran, which applied zona-free hamster
oocytes in order to investigate the frequency
of sperm PCC induction among the lIranian
normal and infertle men (astheno and
oligospermic patients) (26). Their results
showed much higher frequency of sperm PCC
in asthenospermic samples, compared to
sperm from oligospermic or normal men.
Considering these results, in individuals with
sperm abnormalities particularly in
asthenospermic men, sperm PCC was
mentioned as a major cause of fertilization
failure and some idiopathic infertile. In another
study done by the same authors (27), in
addition to PCC, the frequency of numerical
chromosome abnormalities in the sperm of
normal and sub-fertile (oligospermic) men
were evaluated, using zona-free hamster
oocytes. They reported a higher frequency of
PCC as well as numerical chromosome
abnormalities in infertile patients compared to
the normal group. Although in the case of
numerical aberrations the differences were not
significant, it was concluded that sperm
numerical chromosome abnormalities were
involved in male infertility. In another study,
the rate of fertilization and PCC formation was
evaluated after ICSI of hamster oocytes with
irradiated sperms from normal and oligosperm
individuals. This study showed fertilization rate
and frequency of PCC in failed fertilized
oocytes was  significantly  higher in
oligospermic patients compared with normal
ones (28). The possible cause of precluding
oocytes from fertilization in oligospermic
individuals was supposed to be due to the
formation of PCC (28).

Considering the importance of
chromosomal aneuploidy in male infertility,
particularly for sex chromosomes, Ghoraeian
et al studied the possible impact of sex
chromosomal aneuploidy in spermatozoa on
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fertilization and implantation rate after ICSI
(29). This was the first study done in Iran,
which applied PRINS technique in order to
assess the frequency of X and Y disomy in
sperm samples retrieved from normal and
oligozoospermic men (29). In this case,
following ICSI, the rate of eight cell embryos in
each group was determined and followed up
for successful implantation. Regarding the
results, a significantly higher rate of sperm sex
chromosomes disomy and a lower rate of
embryo formation were observed in
oligozoospermic patients compared to normal
men. Also, implantation rate for
oligozoospermic patients was much lower
than the normal group, but it was not
significant.

Considering the results, the authors
concluded that men, especially with severe
oligozoospermia, have an elevated risk for
chromosome abnormalities in their
spermatozoa which  might affect the
fertilization and pre-embryo formation. Sperm
chromatin integrity and the post-zygotic
chromosomal abnormalities were considered
as the probable factors involved in the pre-
implantation stage embryos. Also, the authors
believed that PRINS in parallel to FISH
technique might allow the direct screening of a
large number of spermatozoa.

In summary chromosomal abnormality
studies were mainly performed with the use of
the routine cytogenetic technique for patients
seeking infertility treatment. The main
observation in the routine cytogenetic study
was involvement of inversion in chromosome
9. Few basic studies with advanced molecular
cytogenetic techniques were done for
aneuploidy assessment in spermatozoa.
These methods have shown that the rate of
aneuploidy in sex and autosome
chromosomes correlate with the severity of
infertility. Premature chromosome
condensation of sperms was found as the
main cause of failed fertilization of oocytes.

Yq microdeletion

The AZF region in chromosome Y, at a
molecular level, and according to the certain
deletion pattern of microdeletions which
observed, was divided into AZFa, AZFb, and
AZFc subregions (30). Further, a fourth region
named AZFd, located between AZFb and
AZFc was also reported. However, whether
AZFd truly existed is still debatable. There are

variable phenotypes regarding the deletions in
different regions of AZF; as the entire deletion
of AZFa region leads to SOCS (lack of germ
cells in seminiferous tubules and presence of
Sertoli cells only syndrome) and azoospermia
(31). Complete deletions of AZFb and AZFb+c
show a histological picture of SCO or
spermatogenic arrest resulting in azoospermia
(32).

In azoospermic men, who carry AZFc
deletion, there is a chance of successful
sperm retrieval, following testicular sperm
extraction (TESE). In these patients,
molecular genetic testing has a prognostic
value for a planned TESE and genetics
counselling. Since  the  deletion is
transmissible to the male offspring, the couple
should be informed about the higher risk of
fertility problems in their sons. The prevalence
of Y-chromosome microdeletions is
approximately 1:2000 to 1:3000 males and is
found to be the second most frequent genetic
cause of male infertility after the KFS (33).

A wide range of variability from 1% (73) to
55% has been reported for the rate of Y
microdeletion among infertile men. These
microdeletions mainly occur in severely
oligozoospermic men ranges from 5-10% and
azoospermic men ranges from 10-15% (57-
58). At present, in the case of severe male
infertility, the molecular genetic diagnosis of
Y-chromosomal microdeletions is done by
using polymerase chain reaction (PCR);
amplification of selected regions of the Y
chromosome using sequence tag site (STS)
primers is routinely performed as part of the
infertility workup in many genetic and infertility
laboratories all around the world as well as
Iran, so that to give an appropriate genetic
counseling and explanation for the male
infertility in men with azoospermia or severe
oligozoospermia (34, 35). In lranian
population, the Y microdeletion frequency,
according to the databases from 2003-2012,
has shown variable ranges from 5-52% which
is within the range that has been reported
worldwide (36-42).

Also, the range of Yq microdeletion in
Iranian severe oligozoospermic and
azoospermic men, regarding the results of
these databases, was 5-52.6% and 5.4%-
51.6%, respectively. This wide range of
variability may be the consequence of
different factors, such as the sample size, type
of patients selection, and the variances exist
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among the populations; as in the paper
published by Malekasgar and colleagues, the
high rate of Yq microdeletion observed among
the Iranian infertle men (52%) and also
between azoospermic (51.6%) and severe
oligospermic men (52.6%), compared to
international frequency (37).

According to the results of the investigators
worldwide, deletions mainly involve AZFc, less
frequently AZFb and only rarely the AZFa
regions, the frequency of AZFc, AZFb, and
AZFa deletions in men with Yqg microdeletions
is estimated to be about 60%, 16%, and 5%
respectively (34, 35). It is believed that the
majority of Y microdeletions arise through the
distant homologous recombination between
specific palindromic sequences; although,
deletions generating by the non-homologous
recombination were also recognized (33).
Considering the results of the papers,
studying the incidence of microdeletions in
these regions among Iranian infertile men,
there is a discrepancy among the frequency of
deletions in AZF regions reported by different
researchers.

In a study by Omrani et al, the incidence of
AZF loci microdeletion was investigated
among 99  azoospermic or  severe
oligospermic  lranian men from West
Azarbaijan. The deletions were mainly
occurred in the AZFc region (87.5%) and with
less or no occurrence in the AZFb (29.2%)
and AZFa locus, respectively (38). Also,
Keshvari and coworkers (2011) showed that
microdeletions mostly involved AZFc (100%),
less frequently AZFb (50%), and AZFa (25%)
regions (39). The small sample size in this
study might be the reason for these high
frequencies since only 4 patients were found
to have AZF microdeletion. In another study,
Totonchi and colleagues showed among the
185 patients with AZF microdeletion 147
cases suffered from azoospermia and 38
patients from severe oligozoospermia (40).
Their data indicated that the most frequent
microdeletions were in the AZFc region,
followed by the AZFb + c+d, AZFb +c, AZFDb,
AZFa, and AZF a + c regions.

Contrary to these and many other studies,
in which AZFc deletion was reported to be the
most frequent deletion in infertile men with Y
microdeletions; in the paper published by
Mirfakhraie et al, among 12 Iranian NOA
infertile men in whom microdeletion was
detected, deletion in AZFb region was the

most frequent (66.67%) followed by AZFc
(41.67%), AZFd (33.33%) and AZFa (8.33%),
respectively (41). This was the same for the
results reported by Konar and coworkers, as
the frequency for AZFb microdeletion
(81.81%) was much higher than AZFc region
(18.18%) (42). On the other hand, although
the reported frequency for AZFc microdeletion
presented by Malekasgar et al (2008) was
concordant with other studies (69.2%), for
microdeletions in AZFa region the results
showed higher incidences (23%) and differed
significantly with many other studies (37). It
seems that these discrepancies in the results
might be due to geographical and ethnic
variations of populations under study and
differences in the patients' selection criteria
and sample size as well as the number of
STSs analyzed.

Different studies have shown de novo
sperm chromosome instability (43-47). On the
other hand, AZFc region instability following
exposure to external agents, in a paper that
published by Premi and coworkers showed a
higher rate of microdeletion and amplification
of the AZFc region and DAZ gene markers in
individuals who were in exposure to the
external agent as natural background
radiation (47). Since many patients following
exposure to diagnostic or therapeutic radiation
may have different degrees of infertility. In this
case, Moghbelinejad et al studied genomic
instability of AZFc region after in vitro gamma-
irradiated blood samples of normal,
oligozoospermic, and azoospermic Iranian
individuals (48). Copy number variations of
studied markers in AZFc region (microdeletion
and duplication) in all samples after exposure
to radiation was shown; on the other hand, the
frequency of instability was significantly higher
in samples from infertile men compared to
fertile ones. The authors concluded that this
observation might be a possible explanation
for  induction of  azoospermia  and
oligozoospermia after radiotherapy (48).
Further studies by Mozdarani and Ghoraeian
using a combined FISH and PRINS technique
for detection of DAZ microdeletion in
individual sperms showed considerably
higher frequency of DAZ microdeletion in
sperms of subfertile individuals whom their
leukocytes were normal for DAZ gene (49-51).

In summary, Y chromosome microdeletion
was the most studied issue of male infertility in
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Iran. The rate of microdeletion was found
different in various geographic regions and
ethnicity. However, the frequencies of
microdeletions were found in a worldwide
reported range with some exceptions. Few
basic studied proved the influence of induced
genome  instability in  Y-chromosome
microdeletion specially  AZFc region.
Cytogenetic molecular techniques showed
different frequency of DAZ microdeletion in
sperms and leukocytes indicating that study of
Y chromosome microdeletion in blood
leukocytes might not represent the situation of
these genes in sperms.

Protamine deficiency

Sperm chromatin structure is highly
organized and condensed, containing DNA
and nucleoprotein. Protamine with positive
charge constitutes a great part of
nucleoproteins, which substitute histones
during spermatogenesis process. There are
two types of protamine in human sperm
nucleus which are expressed equally in
mature sperms (protamine 1 and 2) (52).
There are various studies on the clinical
importance of this protein. These researches
showed that unequally expression of
protamine 1 and 2 are obviously accompanied
with male infertility or subfertility with a low
number, low motility, abnormal sperm
morphology, increased rate of sperm DNA
damage, and influence on sperm function
(Figure 1). Protamine deficiency may directly
affect the fertilization process or decrease the
fertilization rate, due to the co-occurrence of
protamine deficiency with the late-stage
spermiogenic anomalies (53-55). Also in Iran,
several studies have been done in order to
evaluate the impact of protamine deficiency
on male infertility. In this case, Iranpour et al
evaluated sperm protamine deficiency and its
relationship with fertilization outcome post-
ICSI by comparing some techniques (56). The
techniqgues wused in this study were
chromomycin A3 (CMA3) staining for
protamine deficiency, aniline blue staining for
excessive histones, SDS for sperm chromatin
stability, and SDS+EDTA for the ability of
sperm to undergo decondensation. Results
indicated that CMA3 was a highly sensitive
and specific test for prediction of fertilization
outcome post-ICSI, and CMA3 positive
spermatozoa had a negative correlation with
sperm fertilization rate, count, and motility;

and a positive correlation with percentage of
abnormal morphology. Also, Iranpour and
coworkers showed protamine deficiency in
sperm nucleus can cause ultra-structural
anomalies in sperm chromatin such as
unpacking of it (57). It is also concomitant with
acrosome and sperm membrane
disturbances. In another study Razavi et al
showed that the injection of sperm into oocyte
is not sufficient for sperm fertilization, and
chromatin packaging can affect the fertilization
rate of sperm; so, the evaluation of sperm
protamine deficiency could be influential for
ICSI results in procedures (58). Since CMA3
staining does not indicate the type of
protamine deficiency or the P1/P2 ratio.
Nasresfahani et al studied the expression rate
of protamine 1 and 2 (or the ratio of P1/P2)
and compared it with ICSI results (59).
Protamine deficiency was determined with
CMA3 staining, and the P1/P2 ratio was
evaluated by nuclear protein extraction, acetic
acid-urea polyacrylamide gel electrophoresis,
and protein bands analyzed with software.
Results showed a negative significant
correlation of fertilization rate with protamine
deficiency and P1/P2 ratio. Therefore, it was
concluded that increased P1/P2 ratio affected
fertilization rate and embryo quality, which
subsequently might affect implantation and
pregnancy outcome in Iranian population.
Chromatin analysis of failed fertilized human
oocytes has shown that after aneuploidy, PCC
is the next prevalent cause of fertilization
failure in both IVF and ICSI (59).

In other studies in Iran, the effect of sperm
protamine deficiency on sperm PCC formation
was evaluated post-ICSI. Results illustrated
that one of the causes of the decrease in the
fertilization rate of sperm, which has
protamine deficiency, is sperm PCC formation
in injected oocytes and there is a direct
relation between protamine deficiencies of
sperm with PCC formation in failed fertilized
oocytes. Authors concluded that, when
spermatozoa were exposed to an environment
with active meiosis promoting factor (MPF),
such as the oocytes in metaphase I,
protamine deficient spermatozoa were more
likely to wundergo PCC compared with
spermatozoa with a normal amount of
protamine, and therefore might result in failed
fertilization (60, 61).

Studies suggest that protamine deficiency
or failed oocyte activation may cause PCC
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formation, but it is not clear which of these two
factors have more impact on fertilization
failure (61).

In order to distinguish between these two
phenomena, Nasr-Esfahani et al ran a
research, in which oocytes that failed to
fertilize after ICSI were artificially activated
and the association between protamine
deficiency and PCC formation was evaluated
in the remaining oocytes that failed to fertilize
(62). The results of the study done by Nasr-
Esfahani et al indicated that after artificial
activation, post-ICSI fertilization rate
increased from 59.95-87.7%, and PCC
spermatozoa appeared to be present in over
50% of the remaining oocytes that failed to
fertilize. The percentage of sperm PCC was
significantly higher in protamine deficient
samples, thus they suggested that sperm
PCC which was induced by protamine
deficiency after failed oocyte activation may
be considered as an alternative cause of
failed fertilization post-ICSI (62).

Sperm DNA becomes susceptible to
damage if chromatin packaging is not
complete during spermatogenesis (63). The
effect of protamine deficiency on sperm DNA
damage and the relationship between these
two parameters with fertilization rate and
embryo development post-ICSI was evaluated

by Nasresfahani et al. They suggested a
direct relation between protamine deficiency
and sperm DNA damage, and unlike
protamine deficiency, sperm DNA
fragmentation does not preclude fertilization.
Nonetheless, embryos derived from
spermatozoa with high DNA damage have a
lower potential to reach blast cyst stage (64).
In another study the extent of sperm DNA
damage with the degree of protamine
deficiency in spermatozoa of normal and
subfertile individuals (oligozoospermia,
asthenozoospermia, and
oligoasthenozoospermia) was compared (65).
Alizadeh et al demonstrated that there is a
relationship between protamine deficiency and
an increase in sperm DNA damage rate of
Iranian subfertile men specially
oligoasthenozoospermic patients (65). Salehi
et al showed a negative correlation between
cluster in concentration (as a seminal protein
that control fertilization) with protamine
deficiency and DNA damage (66).

Few investigators examined the
involvement of protamine deficiency in male
infertility in Iran. However, these limited
number of studies clearly indicated protamine
deficiency in various types of male infertility
and its correlation with DNA damage.
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Figure 1. The flow diagram shows the effect of protamine deficiency and DNA damage on sperm's parameters and functions.

Sperm DNA damage

Nowadays semen analysis is regarded as a
conventional test for men infertility evaluation.
However, it is not possible to predict the
infertility rate of sperms, because some of the
factors like DNA integrity of sperm nucleus

which greatly affects its fertility rate (67).
Sperm DNA damages clearly lead to infertility;
there are various factors resulting in sperm
DNA damage, such as testicular and
environmental factors. It has been shown that
internal and external reactive oxygen species
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(ROS) are crucial factors resulting in sperm
DNA damage. While a low level of ROS in
semen needed for spermatogenesis, it has
been shown that sperm DNA oxidation is
more in infertile men than that of fertile ones
(68, 69). Mozdarani and Khashai presented
the first study in Iranian showing the
background sperm DNA damage of 30 fertile
and 90 infertile Iranian men by using Comet
assay (70). The results of this study showed
that background sperm DNA damage rate in
sperm samples of infertle men was
significantly higher than fertile ones. The
highest rate of sperm DNA damages among
infertile men was observed in asthenospermia
sperm samples (70). Mozdarani and colleague
concluded that the high rate of background
DNA damage in infertile men is caused by
lack of antioxidant. The results of other
studies were in line with above study again
emphasized sperm DNA damages in infertile
and subfertile males were significantly higher
than fertile ones. These studies also showed
sperms with abnormal morphology and low
levels of motility had more abnormal DNA
damages than motile and normal sperms (70,
71). To see the relationship between the
frequency of sperm DNA damage and IVF
succeeding rate, Dehghani et al clarified
sperm DNA damages by using of Acridine
Orange staining method (72). Based on
fertilization results, Dehghani and colleagues
divided samples into three groups: less than
50% fertilization, more than 50% fertilization,
and a complete breakdown of fertilization.
They observed a reverse relationship between
double strand DNA breakages with fertilization
rate (72). They concluded that although
semen analysis experiments were necessary
for infertility diagnosis, it was not sufficient to
predict IVF results. Based on this conclusion,
it was suggested that in cases, where the rate
of sperm with normal DNA was less than
47.25%, the success rate of fertilization would
also be lower; so, DNA quality should be
improved by proper methods before the
treatment cycles (73). In this regard Fanaei et
al, and Mardani and coworkers, showed in
vitro ascorbic acid and saffaron
supplementation during semen processing for
ART could protect semen specimens against
oxidative stress and could improve ART
outcome (73, 74).

Some experiments showed that irradiation
is one of the exogenous sources of ROS

production and DNA damage in sperm, and
causes temporary and permanent infertility.
Irradiation  induces  sperm  aneuploidy,
structural chromosome aberrations, chromatin
structure anomalies, DNA breaks, and higher
frequency of mutations. Micronuclei (MN) are
the result of chromosomal aberrations induced
during the preceding mitotic division of cells.
These are from acentric fragments or lagging
chromosomes induced by mutagens or
clastogens such as ionizing radiation, or they
could be the result of non-disjunction, and so
are a sign of genomic instability (75, 76).

In this regard in a basic study by Mozdarani
and Salimi and Mozdarani and Nazari
indicated that when male germ cells were
exposed to gamma radiation, chromosome
instability = expressed as chromosomal
aneuploidy and micronuclei in subsequent
pre-embryos. They irradiated the whole body
of male NMRI mice with 4 Gy gamma-rays,
and then mated them with non-irradiated
superovulated female mice in 6 successive wk
after irradiation, in a weekly interval. In
experiments involving irradiation of both male
and female mice, following irradiation, the
male mice were mated with female mice
irradiated after induction of superovulation.
The frequency of chromosomal aberrations
and MN in 4-8 cells embryos was higher in
irradiated mice in comparison to control
groups (76-78). Considering the fact that
radiation is one of the main sources of ROS
production, the effects of vitamins E and C as
anti-oxidant has also been studied. Results
indicated that irradiation of gonads during
spermatogenesis and pre-ovulatory stage
oocytes might lead to stable chromosomal
abnormalities affecting pairing and disjunction
of chromosomes in successive pre-
implantation embryos expressed as
chromosomal aberrations (76) and MN (77,
78). On the other hand, both vitamin E and C
reduced clastogenic effects of radiation on
germ cells leading to a reduction in the rate of
chromosomal abnormalities and MN in pre-
embryos; this might be due to vitamin E and C
anti-oxidation  and radical  scavenging
properties (76-78). Moghbelinejad and
colleagues examined the frequency of MN in
lymphocytes of infertile males after exposure
to gamma irradiation. This study carried on in
three groups of oligospermic, azoospermic,
and fertile men. They examined micronuclei
frequency in blood samples of subjects when
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exposed to 0, 2 and 4 Gy of radiation (79).
The results illustrated a statistically significant
difference between the frequencies of
micronuclei in lymphocytes of infertile
individuals, compared to healthy donors,
before and after exposure to gamma rays
(79).

Sperm DNA damage was studied both on
human samples and indirectly on animals.
Various degrees of sperm DNA damage were
observed for subfertile males with different
infertility problems. In animal studies, it was
shown that induced DNA damage in sperm
could pass to the next generation leading to
cytogenetically abnormal pre-embryos (76-
78).

Autosomal gene mutations and
polymorphisms

Many single genes are also being
investigated for possible roles in male factor
infertility among the Iranian infertile men
(Table I). Glutathione S-transferases related
enzymes theta (GSTT1), and Mul (GSTML1) in
addition to cytochrome P450 (CYP450) and
CYP1Al are considered to involve in the
phase Il biotransformation of xenobiotic drugs,
poisons, and other compounds. The
relationship between polymorphism of the
genes which code these enzymes and male
infertility was also shown (80).

Results of published meta-analysis
literature reviews on the prevalence of
GSTM1 and GSTT1 genes polymorphisms
have shown that GSTM1 and GSTT1 null
genotypes are associated with a strong and
modest increase in the risk of male infertility
respectively; dual null genotype  of
GSTM1/GSTT1 is also significantly associated
with increased risk of male idiopathic infertility
(81, 82). Except for a meta-analysis paper,
recently published by Song et al, which
showed no association between GSTT1 gene
polymorphisms and male infertility (82).

For Iranian population, an increased risk of
infertility in the patients with null genotype of
GSTM1 and GSTT1 has been reported.
Genotyping analysis of GSTM1, GSTT1, and
GSTP1 genes polymorphisms for the first time
showed that combination of deletion
genotypes of GST (GSTM1 and GSTT1) and
of GSTM1 null, GSTT1 null, and GSTP1
(lle/lle) genotypes pose an even higher risk of
infertility, but the non-deletion GSTM1 and
GSTT1 genotypes and the variant genotypes

of GSTP1 (lle/Val and Val/Val) have emerged
as protective factors. In addition, GSTP1 wild-
type genotype in combination with GSTM1
null or GSTT1 null genotype increased the
probability for infertility (83). The synergistic
effects of the aforementioned three
polymorphisms that the authors suggested
were worth acknowledging. In another study
by Salehi and coworkers, the relationship
between the combination of GSTM1 and
GSTT1 null genotypes and the increasing
probability of idiopathic male infertility was
emphasized again (84).

Lu and colleagues reported that CYP1A1l
polymorphisms were not involved in the
etiology of male infertility (85). However, other
papers showed that CYP1A1*2A CC and
the combination of GSTM1 and CYP1Al1*2C
genotypes were associated with increased
risk of male infertility, while CYP1A1*2A TC
genotype showed a non-significant increased
risk of male infertility (86). In this regard
results of genotyping of the CYP1A1*2A gene
polymorphisms on North Iranian men with
idiopathic infertility showed the frequency of
TT, TC, and CC genotypes of CYP1Al
polymorphism in the controls were the same
with infertile men; authors also reported that
CYP1A1 polymorphism did not display any
association with male infertility in Iranian
population (87).

Estrogen receptors (ER) are a group of
proteins, found inside cells that are activated
by the hormone estrogen (1783-estradiol). Two
different forms of ER, usually referred to as a
and B are encoded by different genes, ESR1
and ESR2 on 6g25.1 and 14qg23.2
respectively (88, 89). Polymorphisms of the
ER genes have been implicated in male
infertility; however, there is a lack of
comprehensive data probably because of
interaction between genes and environment.
A possible role of ESR-a and ER-S variants on
male infertility in Iranian males have shown in
different studies. Association study between
polymorphisms of the ESR1 (Pvull and Xbal)
and ESR2 (Rsal and Alul) genes and male
infertility suggested 3 times higher frequency
of the heterozygous Rsal genotype in men
with low sperm concentration compared to the
controls. In contrast, the proportion of
homozygous Alul genotype was only 1/3 in
severely oligoazoospermic men compared to
control (89). Genotyping of  these
polymorphisms showed the presence of the
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ER-a Pwull TC, ER-a Xbal AG, and ER-8 Alul
GG genotypes have a protective effect on
infertility, but the ER-B Rsal AG and ER-S Alul
AG genotypes were associated with increased
infertility risk (90). Results of a study on
mutation detection in human estrogen
receptor B gene among infertile male showed
one heterozygous sequence variation (IVS 8-
4G>A) near the 5 splicing region of intron 8 in
5 out of 96 infertle men. No variation was
identified in control population (91). The
activity of androgen, an important steroid for
maintaining sperm production and growth of
the prostate gland, is mediated through the
androgen receptor (AR), a ligand-dependent
transcription factor.

P53 (also known as protein 53 or tumor
protein 53) is a tumor suppressor protein that
is encoded by the TP53 gene in humans,
regulates the cell cycle, and thus, functions as
a tumor suppressor. P53 has also been
described as "the guardian of the genome". In
humans, a common polymorphism involves
the substitution of an arginine for a proline
(G—C) at codon position 72 exon 4 (92).
There had been no significant investigation
considering the influence of this polymorphism
on male infertility in other countries except
only one research on China population in
which no relation was observed in this regard
(92). In Iran, allele frequency evaluation of this
substitution in idiopathic infertile
azoo/oligospermic patients and fertile healthy
control men showed the presence of Arg allele
among infertile men compared with controls
(56% vs 44%). This research concluded that
arginine allele might be at greater risk of
developing idiopathic infertility in Iranian men
(93).

Heme oxygenase occurs as 2 isozymes
namely heme oxygenase-1 and heme
oxygenase-2. The HO-1 enzyme is a stress-
responsive protein which could be induced by
various oxidative agents. HO-1 enzyme
activity in human seminal plasma is induced
by ROS which is low in azoospermia and
moderate in oligospermia in comparison to
normal controls (94, 95). On the other hand,
several studies have demonstrated that GT-
repeats in the promoter region of HO-1 gene
is highly polymorphic (96, 97). Regarding the
relationship between this polymorphism and
male infertility, Siasi et al showed that GT
repeats expansion in the promoter of the HO-

1 gene was associated with oligospermia and
azoospermia among lranian infertile cases,
and L allele frequency with >27 repeats was
significantly higher among these group (98).

Methylenetetrahydrofolate reductase
(MTHFR) is rate-limiting and plays a crucial
role in folate metabolism, and it is encoded by
the MTHFR gene (99). There are DNA
sequence variants (genetic polymorphisms)
associated with this gene. Two of the most
investigated polymorphisms are C677T
(rs1801133) and A1298C (rs1801131) (100).
The results of correlation between these
polymorphisms and male infertility reported in
various studies are very controversial (101-
103). In order to determinate the association
between 3 MTHFR gene polymorphisms
(C677T, A1298C, and G1793A) and male
infertility in Iranian population, Safarinejad and
colleagues showed that only C677T
polymorphism was associated with an
increased risk of idiopathic male infertility, and
the 677T allele carriers (TC or TT) had a
significantly increased risk of infertility
compared with the CC homozygote’s (104).
About the epigenetic study of this gene,
Khazamipour and coworkers for the first time
compared the methylation status of the
promoter region of MTHFR in blood and
testicular biopsies of patients with non-
obstructive azoospermia and obstructive
azoospermia without anomalies of
spermatogenesis. In blood samples, no
difference in the methylation profile of the
promoter region of MTHFR was observed.
They indicated that hyper-methylation in testis
DNA from NOA patients was specific and not
due to a general methylation defect, therefore,
they suggested that epigenetic silencing of
MTHFR could play a role in azoospermic
infertility (105).

Glutathione peroxidase (GPx) is an
enzyme family with peroxidase activity
protecting the organism from oxidative
damage. GPx4 has a high preference for lipid
hydroperoxides and is a major seleno protein
in sperm. It is also one of the enzymatic
mechanisms that play multiple roles during
spermatogenesis (106). According to the
results of a paper which studied C-T+6, G-A
+17, and G-A+1725 polymorphisms among
Iranian infertile men, it was determined that
the prevalence of these mutations in these
infertile men was probably low, and it might
have no association with the etiology of the
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disorder affecting sperm parameters (107). It
is also worth noting that results of other
studies indicated that (GPx4) polymorphism
couldn’t generally account for the correlation
of phospholipid hydroperoxide glutathione
peroxidase (PHGPx) content of sperm and
fertility-related  parameters, but further
examination of this gene as a potential cause
of infertility in particular cases was warranted
(108-110).

The cystic fibrosis  transmembrane
conductance regulator (CFTR) gene is located
in region gq31.2 of human chromosome 7. The
normal CFTR protein product is a chloride
channel protein found in cell membranes of
lung, liver, pancreas, intestine, reproductive
tract, and skin. Defective versions of this
protein, caused by CFTR gene mutations, can
lead to the development of cystic fibrosis (CF)
and congenital bilateral aplasia of the vas
deferens (CBAVD) (111). CBAVD is a
condition present since birth in which the
tubes that carry the sperm out of a man's
testes (the vas deferens), fail to develop
properly which can cause male infertility. To
investigate CBAVD at the molecular level in
Iran, Radpour and colleagues have
characterized the mutations in the CFTR gene
in patients with this condition; none had
clinical manifestations of cystic fibrosis (CF).
They analyzed a DNA variant (the 5T allele) in
a non-coding region of CFTR, which causes
reduced levels of the normal CFTR protein
and M470V exon 10 missense polymorphism.
Their results showed that the combination of
the 5T allele in one copy of the CFTR gene
with an F508del mutation in the other copy
was the most common cause of CBAVD in
Iranian patients (111).

Different alleles at the (TG) m (T) n
polymorphic locus at the 3' end of human
CFTR intron 8 determine the efficiency of
exon 9 splicing. It was shown that among
Iranian CBAVD men, longer TG polymorphic
tracts increase the proportion of exon 9
transcripts deletion, but only when it was
activated by the 5T allele; highest level of
exon 9+ splicing efficiency was among the
tested samples with the (TG) 12 (T) 7 allele
(111). The first NBD (NBF1) plays an
important regulatory role in CFTR function
(111). In another study, one novel nonsense
mutation (K536X) was detected in the NBD1
region, and considered as a severe allele
responsible for elevated sweat chloride levels

and obstructive azoospermia. Two other novel
missense mutations, not reported previously,
were (Y122H and T338A) in the M2 and M6
regions of CFTR gene (112).

There have been numerous investigations
that presented a significant relationship
between reduced protamine genes expression
and male infertility. On the other hand, studies
on the variations in human protamine genes in
different populations have indicated that these
variants in protamine genes are population-
specific, and except a few studies, most
papers have reported that there is no specific
relation between protamine gene variants and
male infertility (113). Esfahani et al performed
the first study in this regard, where two single
nucleotide polymorphisms (SNP) in protamine
1, 2 genes were investigated. G197T in
protaminl gene converts argenine to serin; it
also causes phosphorilation and incorrect
protamine-protamine interaction. Second SNP
was C248T in protamine 2 gene which causes
immature stop codon and truncated protein.
They studied SNPs on blood samples of 273
oligosperm and 35 fertile men by using RFLP
technique. None of the reported SNPs were
observed in all 308 samples (fertile and
infertile). They concluded that in Iranian
population it was not possible to use these
two SNPs as detecting markers (114). Siasi
and coworkers, studied the relationship
among some protamine genes family SNPs
including PRM1 (C321A), PRM2 (C248T),
TNP2 (T1019C), G1272C, and G del in 1036
and 1046 bp. No polymorphisms were found
for tested SNPs except for PRM1 (C321A)
and TNP2 (G1272C), in which frequency of
altered AA and GG genotypes were slightly
higher in the infertile case group (115). These
results were consistent with previous studies
and indicated that all tested SNPs were not
associated with oligospermia, azospermia,
and idiopatic male infertility in Iranian
population. Some other polymorphisms are
summarized in table II.

Follicle stimulating hormone (FSH) is
essential for normal reproductive function in
males and females. FSH acts through its
specific receptor named FSHR which is
expressed only in Sertoli cells in humans.
Among several SNPs within the FSHR gene,
A919G and A2039G affect the receptor
function (116). Up to now, controversial
findings have been obtained concerning the
effect of SNPs within FSHR gene on male
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infertility. In this regard, Gharesi-Fard and
colleagues showed, among the Fars
population, two polymorphisms of this gene
(A919G and A2039G) might increase the
susceptibility to obstructive azoospermia.
They recommended further investigations
among the other ethnic populations of Iran
(217).

YBX2 is the human homologue of Xenopus
DNA/RNA-binding and mouse MSY2 proteins
located on chromosome 17p13.1. (118, 119).
Studies with animal models showed
expression of this protein in meiotic and post-
meiotic germ cells. Loss of its expression
leads to the nuclear condensation defects that
occur in Msy2-null late-stage spermatids
(120). Some polymorphisms of this gene
associated with male infertility in diverse
ethnic populations were shown (121). About
the Iranian population, in one study,
Najafipour and coworkers observed down-
regulation of this gene in testis tissue of non-
obstructive azoospermia men. In terms of
pathological evaluation, these patients had
spermatid maturation arrest (122).

YBX2 acts as a mRNA stabilizer and a
transcription factor of PRM genes; and, its
loss of expression is likely to contribute to the
nuclear condensation defects in Msy2-null
late-stage spermatids (123). Moghbelinejad et
al evaluated the relationship between PRM

deficiency and YBX2 expression level in testis
tissue of azoospermic men. They showed a
significant correlation between PRM2 mRNA
deficiency and a lower YBX2 mRNA content in
testicular spermatids of infertile men. They
concluded that these molecules may be
regarded as suitable predictive biomarkers to
discriminate between fertile and infertile men
(124). In another study, Najafipour et al
evaluated exon 1 of YBX2 gene
polymorphisms frequency, in Iranian infertile
men. Their results showed, among the
different polymorphisms of this gene, the
frequency of TT genotype in rs222859 G>T
polymorphism, was significantly higher in
azoospermic samples in comparison to
normal ones. Gene expression study of this
gene showed, downregulation of YBX2 gene
in blood and testis samples, but there was not
a significant difference in gene expression
level between patients with mentioned
mutation and without the mutation. They
concluded that in future studies, it is better to
investigate the effect of this mutation on the
3D structure of the protein (125).

In essence, various autosomal gene
mutations and polymorphisms were
investigated for their possible role in male
infertility. All of the genes studied were mainly
reported in the literature but these studies
verified their impact on Iranian individuals.

Table 1. Known and reported autosomal genes mutations and polymorphisms in Iranian infertile men

Study Gene name

Types of mutation and polymorphism in Iranian
infertile men

Plaseska-Karanfilska D, et al and
Shefi S, et al (43, 44) GSTML1)

Omrani MD and Nordenskhold A
(91)

Omrani MD, et al (89)
Mashayekhi F and Hadiyan SP (93) P53
Siasi E, et al (98)

Khazamipour N, et al (105)

Radpour R, et al and Hojat Z, et al

Asadpor U, et al (130)

Sarkardeh H, et al (131)

Glutathione S-transferase theta & mu (GSTT1,

Androgene receptor (AR)

Estrogen receptor B (ER2)

Heme oxygenase 1 (HO1)
Methylenetetrahydrofolate reductase (MTHFR)

Cystic fibrosis transmembrane conductance
(111, 112) regulator (CFTR)

Ubiquitin-specific protease (USP26)

Mov10 RISC complex RNA helicase-like
1(MOV10L1)

Null genotype

CAG repeat in codon region (26 length), 1510CRA
transversion in exon 1

Rsal AG
Alul AG
(IVS 8-4G>A): near the 5’ splicing region of intron 8

(G—C) at codon position 72 exon 4

GT repeats expansion in the promoter (27 length)
C677T (rs1801133)

5T allele in a noncoding region
M470V and M4691 in exon 10
(TG) 12 (T) 7 repeat in splicing site of intron 8
(K536X) in the nucleotide-binding domain 1 (NBD1)
(Y122H and T338A) in the M2 and M6 regions

370-371insACA, 1423C>T and 494 T>C.

Missense mutation G—A (rs2272837)
Nonsense polymorphisms C—A (1s2272836), A—G
(rs11704548), C—T (rs138271) in the exonic
sequences.

C—A (1s12170772), G—A (rs2272840), A—G
(rs17248147) in the intronic sequences.
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Table I1. The frequency of AZFa, b, ¢ microdeletions of Y chromosome reported for the Iranian infertile and subfertile men

Study

Studied markers

Y microdeletion frequency*

Asadi F, et al (36)

Malekasgar AM, et al (37)

Omrani MD, et al (38)

Mirfakhraie R, et al (39)

Keshvari SM, et al (40)

Totonchi M, et al (41)

Konar E, et al (42)

AZFa: sY81, sY83, AZFb: sY127, sY130, sY131, sY147, sY149, sY157,

sY158, AZFc: sY254, sY276

AZFa: sY81, sY83, sY121, AZFb: sY128, sY130, sY133, sY143, AZFc:

SY147,sY149, sY242, sY231, sY254, sY255, sY182, sY238 sY202,
sY158, sY157

AZFa: sY121,sY182, sY90, sY87, sY86, sY84, sY81 AZFb: sY134,
sY133,sY130, sY128, sY127, sY124, sY117, sY109, sY11l AZFc:
sY272,sY255, sY254, sY151, sY158, sY157, sY155, sY146, sY283,
sY277,sY238, sY276 AZFd: sY152, sY153

AZFa: sY81, sY84, sY86, AZFb: sY121, sY124, sY127, sY134, AZFc;
sY242,sY239, sY254, sY255, AZFd: sY145, sY153

AZFa: SY121, SY83, AZFb: SY121, SY134 SY 143, AZFc: SY254,
SY255, SY149, SY202, SY231.

AZFa: SY84, SY83, AZFh: SY142, SY134 AZFC: SY157, SY154,
SY158, SY254

AZFa: SY182, AZFb: SY133AZFC: SY255, SY254, SY146, SY158,
SY238, SY155, SY277, SY272, SY283, SY157, AZFd: SY153

Two of the patients (5%), in AZFc
region (DAZ locus)

AZF: 24.2%, AZFc: (87.5%), AZFb:
(29.2%), AZFa: (0%)

AZF: (52%), AZFa: (23%), AZFb:
(23%)
AZFc: (69%)

AZF: 12%, AZFa (8.33%), AZFb
(66.67%)
AZFc (41.67%), AZFd (33.33%)

AZFa: (25%), AZFb: (75%), AZFc:
(100%)

AZFa (2.16%), AZFb (4.32%), AZFc
(51.35%), AZFa+c (0.54%), AZFb+c
(15.67%), AZFa+b+c (15.67%)

AZFa (), AZFb (20%), AZFc (80%),
AZFd (-)

*Percentages given in the table are derived from the stated reference.

X-linked

genes polymorphisms and
mutation

It is estimated that 10%-20% of patients
with male infertility could have reduced AR
function as a result of CAG repeats. The
expansion of CAG repeats in infertile men was
shown in some studies, while other studies
have not (126). In one study, 13 different
alleles in the infertile group ranging from 18 to
32 CAG repeats and 11 different alleles in
control groups ranging from 16 to 28 CAG
repeats have been reported. The mean length
of CAG repeats was significantly different
between infertile and fertile groups. Long
androgen receptor CAG allele, which was
found in up to 38% of infertile males, was
associated with defective spermatogenesis
(26). The average CAG repeat length in exon
1 of the AR gene found in other white
populations was similar to the studied Iranian
population (127). The results of the point
mutation analysis in this gene showed 8
mutations in patients with azoospermia, 4 of
which were located in exon 1. In a case report
study by Mirfakhraei and colleagues, results of
sequencing analyses detected a 1510CRA
transversion in exon 1 of the AR gene, which
resulted in a p.Pro504Thr substitution in the
transactivation domain of the protein. This
substitution has not been previously reported.
Authors also suggested molecular analysis of
this gene in Iranian infertile men (128).

Ubiquitin-specific protease 26 (USP26), is
an X-linked gene involved in spermatogenesis
(129). USP26 express abundantly in mice

testis. USP26 belongs to a family of de
ubiquitinating enzymes (DUB), which play an
important role in various cellular processes
including growth control, differentiation,
oncogenesis and genome integrity (129).

Sequence alterations in the USP26 gene
were shown in populations of men with severe
male factor infertility; including men with
Sertoli cell-only syndrome (SCO) and
maturation arrest. Three mutations usually
found to be clustered in the same allele, 370—-
371insACA, 494 T>C and 1423C>T (130).
Another study in Iran, indicated that there was
a haplotype between three observed
mutations in Iranian population. Surprisingly,
the total frequency of mutations in men with a
history of idiopathic recurrent pregnancy loss
and azoospermic cases was significantly
higher than that of in control groups (131-
132).

In summary, X-linked genes
polymorphisms and mutations have been
studied in a limited number of investigations.
Results of these studies were nearly similar to
reported findings in the literature.

Conclusion

During the last 17 yr, great efforts have
been made to investigate the molecular
genetics and the cytogenetic basis of male
infertility in Iran. The studies being done
involved various aspects of genetic studies
from molecular to cytogenetic of male
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infertility. Most of the investigations were
novel in their nature worldwide and improved
our understanding of male infertility. Although
compared to extensive research has been
done worldwide on the issues discussed, the
contribution of these publications adds little to
the literature. However, all the studies being
done on lranian patients shed some lights on
the genetics of male infertility and paved the
way for further investigations.
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