Volume 16, Issue 9 (September 2018)                   IJRM 2018, 16(9): 577-586 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kaushik K, Kaushal N, Raj Kalla N. Conversion of apoptosis to necrosis and the corresponding alteration in the oxidative milieu of male germ cells of rat under acute heat stress: An experimental study. IJRM 2018; 16 (9) :577-586
URL: http://ijrm.ir/article-1-1242-en.html
1- Department of Zoology, Panjab University, Chandigarh, India , kaushik41738@yahoo.co.in
2- Department of Biophysics, Punjab University, Chandigarh, India
Abstract:   (3348 Views)
Background: Increased scrotal temperature can disrupt spermatogenesis leading to male infertility. Germ cells being heat sensitive maintain their genetic integrity via protective mechanism originated from the cell itself or by means of cell death. However, qualitative differentiation of how reactive oxygen species and antioxidant enzymes regulate signaling pathways of cellular damage including DNA fragmentation at varied temperatures remains unexplored. Objective: The study was designed to evaluate the effects of heat mediated oxidative stress on male germ cells. Also, the time-dependent qualitative variation in the germ cell death was studied.
Materials and Methods: Thirty male Wistar rats were randomly segregated into five major groups (n=6/each) i.e., Control, 30, 45, 60, and 90-min counterparts according to heat treatment protocol. Quantitation of DNA and DNA ladder studies was performed along with various biochemical parameter like lipid peroxidation (LPO), glutathione, catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutatione reductase (GR), glutathione-s-transferase (GST).
Results: Animals receiving heat treatment for 30-min and 45-min revealed systematic and gradual response to heat stress; whereas, 60-min and 90-min treated animals showed a typical and abrupt change of the internal milieu of germ cells. Laddering and smearing effect of damaged DNA in 30 and 45 min and 60 and 90 min heat treated animals was seen respectively.
Conclusion: As the duration of heat treatment increases, the rate of apoptosis reaches an optimum level, and a further increase in the duration of heat treatment converted the mode of cell death from apoptosis to necrosis, implicitly due to severe oxidative attack.
Full-Text [PDF 461 kb]   (801 Downloads) |   |   Full-Text (HTML)  (536 Views)  
Type of Study: Original Article |

References
1. Cooke HJ, Saunders PT. Mouse models of male infertility. Nat Rev Genet 2002; 3:790-801. [DOI:10.1038/nrg911] [PMID]
2. Paul C, Melton DW, Saunders PT. Do heat stress and deficits in DNA repair pathways have a negative impact on male fertility? Mol Hum Reprod 2008; 14: 1-8. [DOI:10.1093/molehr/gam089] [PMID]
3. Bujan L, Daudin M, Charlet JP, Thonneau P, Mieusset R. Increase in scrotal temperature in car drivers. Hum Reprod 2000; 15: 1355-1357. [DOI:10.1093/humrep/15.6.1355] [PMID]
4. Mieusset R, Bujan L. Testicular heating and its possible contribution to male infertility: a review. Int J Androl 1995; 18: 169-184. [DOI:10.1111/j.1365-2605.1995.tb00408.x] [PMID]
5. Paul C, Teng S, Saunders PT. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod 2009; 80: 913-919. [DOI:10.1095/biolreprod.108.071779] [PMID] [PMCID]
6. Kanter M, Aktas C, Erboga M. Heat stress decreases testicular germ cell proliferation and increases apoptosis in short term: ultrastructural study. Toxicol Ind Health 2013; 29: 99-113. [DOI:10.1177/0748233711425082] [PMID]
7. Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod 2001; 65: 229-239. [DOI:10.1095/biolreprod65.1.229] [PMID]
8. Morgentaler A, Stahl BC, Yin Y. Testis and temperature: a historical, clinical and research perspective. J Androl 1999; 20: 189-195.
9. Steinberger E, Dixon WJ. Some observations on the effect of heat on the testicular germinal epithelium. Fert Steril 1959; 10: 578-595. [DOI:10.1016/S0015-0282(16)33605-6]
10. Kim B, Park K, Rhee K. Heat stress response of male germ cells. Cell Mol Life Sci 2013; 70: 2623-2636. [DOI:10.1007/s00018-012-1165-4] [PMID]
11. Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 1997; 11: 118-124. [DOI:10.1096/fasebj.11.2.9039953] [PMID]
12. Menon SC, Goswami PC. A redox cycle within the cell cycle: ring in the old with the new. Oncogene 2007; 26: 1101-1109. [DOI:10.1038/sj.onc.1209895] [PMID]
13. Dypbukt JM, Ankarcrona M, Burkitt M, Sjöholm A, Ström K, Orrenius S, et al. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells: The role of intracellular polyamines. J Biol Chem 1994; 269: 30553-30560.
14. Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 1991; 24: 203-214. [DOI:10.1111/j.1365-2184.1991.tb01150.x] [PMID]
15. Hikim AP, Lue Y, Yamamoto CM, Vera Y, Rodriguez S, Yen PH, et al. Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology 2003; 144: 3167-3175. [DOI:10.1210/en.2003-0175] [PMID]
16. Adeli K, Ogboma G. Rapid purification of human DNA from whole blood for potential application in clinical chemistry laboratories. Clin Chem 1990; 36: 261-264.
17. Trush MA, Mimnaugh EG, Ginsburg E, Gran TE. In vitro stimulation by paraquat of reactive oxygen-mediated lipid peroxidation in rat lung microsomes. Toxicol Appl Pharmacol 1981; 60: 279-286. [DOI:10.1016/0041-008X(91)90231-3]
18. Moron MS, Dipierre JW, Mannerwik B. Levels of glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979; 582: 67-78. [DOI:10.1016/0304-4165(79)90289-7]
19. Luck H. Catalase. In: Bergmeyer HU (ed). Method of Enzymatic Analysis. New York and London, United States of America and United Kingdom: Aademic Press; 1963: 885-894. [DOI:10.1016/B978-0-12-395630-9.50158-4]
20. Kono Y. Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 1978; 186: 189-195. [DOI:10.1016/0003-9861(78)90479-4]
21. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158-169.
22. Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol1985; 113: 484-495. [DOI:10.1016/S0076-6879(85)13062-4]
23. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249: 7130-7139.
24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem 1951; 193: 265-275.
25. Santos-Marques MJ, Carvalho F, Sousa C, Remião F, Vitorino R, Amado F, et al. Cytotoxicity and cell signalling induced by continuous mild hyperthermia in freshly isolated mouse hepatocytes. Toxicology 2006; 224: 210-218. [DOI:10.1016/j.tox.2006.04.028] [PMID]
26. Setchell BP. The effects of heat on the testes of mammals. Anim Reprod 2006; 3: 81-91.
27. Sailer BL, Sarkar LJ, Bjordahl JA, Jost LK, Evenson DP. Effects of heat stress on mouse testicular germ cells and sperm chromatin structure. J Androl 1997; 18: 294-301.
28. Kaur S, Bansal MP. Protective role of dietary-supplemented selenium and vitamin E in heat-induced apoptosis and oxidative stress in mice testes. Andrologia 2015; 47: 1109-1119. [DOI:10.1111/and.12390] [PMID]
29. Collins JA, Schandl CA, Young KK, Vesely J, Willingham MC. Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem 1997; 45: 923-934. [DOI:10.1177/002215549704500702] [PMID]
30. Cohen GM, Sun XM, Fearnhead H, MacFarlane M, Brown DG, Snowden RT, Dinsdale D. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J Immunol 1994; 153: 507-516.
31. Walker PR, Weaver VM, Lach B, LeBlanc J, Sikorska M. Endonuclease activities associated with high molecular weight and internucleosomal DNA fragmentation in apoptosis. Exp Cell Res 1994; 213: 100-106. [DOI:10.1006/excr.1994.1178] [PMID]
32. Weis M, Schlegel J, Kass GE, Holmstrom TH, Peters I, Eriksson J, et al. Cellular events in Fas/APO-1-mediated apoptosis in JURKAT T lymphocytes. Exp Cell Res 1995; 219: 699-708. [DOI:10.1006/excr.1995.1281] [PMID]
33. Yadav G, Awasthi JR, Pandey N, Shrestha S, Jha CB. Effect of vitamin E against heat stress induced testicular damage in wistar albino rats. Int J Anat Res 2017; 5: 3800-3804. [DOI:10.16965/ijar.2017.184]
34. Takahashi A, Matsumoto H, Nagayama K, Kitano M, Hirose S, Tanaka H, et al. Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res 2004; 64: 8839-8845. [DOI:10.1158/0008-5472.CAN-04-1876] [PMID]
35. Kampinga HH. Hyperthermia, thermotolerance and topoisomerase II inhibitors. Br J Cancer 1995; 72: 333-338. [DOI:10.1038/bjc.1995.334] [PMID] [PMCID]
36. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 1990; 9: 515-540. [DOI:10.1016/0891-5849(90)90131-2]
37. Moron MS, Dipierre JW, Mannerwik B. Levels of glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979; 582: 67-78. [DOI:10.1016/0304-4165(79)90289-7]
38. Pederson TC, Aust SD. Relationship between reduced nicotinamide adenine dinucleotide phosphate-dependent lipid peroxidation and drug hydroxylation in rat liver microsomes. Biochem Pharmacol 1994; 23: 2467-2469. [DOI:10.1016/0006-2952(74)90243-3]
39. Adler V, Yin Z, Tew KD, Ronai Z. Role of redox potential and active oxygen species in stress signaling. Oncogene 1999; 18: 6104-6111. [DOI:10.1038/sj.onc.1203128] [PMID]
40. Ho YS, Lee HM, Mou TC, Wang YJ, Lin JK. Suppression of nitric oxide-induced apoptosis by N-acetyl-L-cysteine through modulation of glutathione, Bcl-2, and bax protein levels. Mol Carcinog 1997; 19: 101-113. https://doi.org/10.1002/(SICI)1098-2744(199707)19:2<101::AID-MC5>3.0.CO;2-I [DOI:10.1002/(SICI)1098-2744(199707)19:23.0.CO;2-I]
41. Perovic S, Pialoglou P, Schroder HC, Pergande G, Muller WE. Flupirtine increases the levels of glutathione and Bcl-2 inhNT (human Ntera/D1) neurons: mode of action of the drug-mediated anti-apoptotic effect. Eur J Pharmacol 1996; 317: 157-164. [DOI:10.1016/S0014-2999(96)00712-1]
42. Strack PR, Frey MW, Rizzo CJ, Cordovo B, George HJ, Meade R, et al. Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc Natl Acad Sci USA 1996; 93: 9571-9576. [DOI:10.1073/pnas.93.18.9571] [PMID] [PMCID]
43. Adriane C, Florencia GQ, Gregory JG, Nicholas FL. Glutathione depletion is associated with decreased Bcl-2 expression and increased apoptosis in cholangiocytes. Am J Physiol 1998; 275: 749-757. [DOI:10.1152/ajpgi.1998.275.4.G749] [PMID]
44. Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod 1998; 13: 1429-1436. [DOI:10.1093/humrep/13.6.1429] [PMID]
45. Loven DP, Leeper DB, Oberley LW. Superoxide Dismutase Levels in Chinese Hamster Ovary Cells and Ovarian Carcinoma Cells after Hyperthermia or Exposure to Cycloheximide. Cancer Res 1985; 45: 3029-3033.
46. Peltola V, Parvinen M, Huhtaniemi I, Kulmala J, Ahotupa M. Comparison of effects of 0.5 and 3.0 Gy X-irradiation on lipid peroxidation and antioxidant enzyme function in rat testis and liver. J Androl 1993; 14: 267-274.
47. Ahotupa M, Huhtaniemi I. Impaired detoxification of reactive oxygen and consequent oxidative stress in experimentally cryptorchid rat testis. Biol Reprod 1992; 46: 1114-1118. [DOI:10.1095/biolreprod46.6.1114] [PMID]
48. Azevedo RB, Lacava ZG, Miyasaka CK, Chaves SB, Curi R. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids. Braz J Med Biol Res 2001; 34: 683-687. [DOI:10.1590/S0100-879X2001000500018] [PMID]
49. Griveau JF, Dumont E, Renard P, Callegari JP, Le Lannou D. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J Reprod Fertil 1995; 103: 17-26. [DOI:10.1530/jrf.0.1030017] [PMID]
50. Ghyselinck NB, Jimenez C, Dufaure JP. Sequence homology of androgen-regulated epididymal proteins with glutathione peroxidase in mice. J Reprod Fertil 1991; 93: 461-466. [DOI:10.1530/jrf.0.0930461] [PMID]
51. Mannervik B, Danielson UH. Glutathione transferase- structure and catalytic activity. CRC Crit Rev Biochem 1988; 23: 283-337. [DOI:10.3109/10409238809088226] [PMID]
52. Jakoby WB, Ziegler DM. The enzymes of detoxification. J Biol Chem 1990; 265: 20715-20718.
53. Gu W, Hecht NB. Developmental expression of glutathione peroxidase, Catalase and Mn SOD mRNA during spermatogenesis in the mouse. J Androl 1996; 17: 256-262.
54. Hayes JB, Pulford DJ. The glutathione-S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30: 445-600. [DOI:10.3109/10409239509083491] [PMID]
55. Gu ZT, Wang H, Li L, Liu YS, Deng XB, Huo SF, et al. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Sci Rep 2014; 4: 44-69 [DOI:10.1038/srep04469] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb