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Exposure to cell phone induce oxidative stress
in mice preantral follicles during in vitro
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Background: Radiations emitting from mobile phones have been proposed to
affect people’s health, mediated by various mechanisms like induction of oxidative
stress.

Objective: This study aims to investigate the effect of cell phone exposure on the
oxidative status of mice preantral follicles (PFs) during in vitro culture.

Materials and Methods: PFs (n = 2580) were isolated mechanically from 16 to 18 day-old
NMRI mice (n=50) and divided into control and cell phone-exposed groups. PFs were
cultured for 12 days and ovulation was induced using human chorion gonadotropin.
The developmental parameters including size, survival, antral cavity formation,
ovulation and oocyte maturation were assessed. In parallel, enzymatic antioxidants
activities, total antioxidant capacity (TAC), and Malondialdehyde (MDA) levels were
evaluated.

Results: The diameters and the rates of survival, antrum formation, ovulation, and
metaphase |l oocytes of exposed PFs to cell phone were significantly lower than
those of the control group (p < 0.001). The PFs exposed to cell phone had significantly
lower superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT)
activity compared with the control group. In the cell phone exposed PFs, the TAC level
was significantly lower (p < 0.001) and MDA levels was significantly higher (p < 0.001),
compared tothe those of control group.

Conclusion: Exposure to cell phone compromised the developmental competence of
mice PFs by increasing oxidative stress.

Ovarian follicle, Cell phone, Oxidative stress, Mice.
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1. Introduction

The widespread usage of the cell phone has
led to concerns about the potentially adverse
effects of its emitted radiation on reproductive
health (1). The mechanism of its effects is not
entirely clear, however, in general, cell phones
have two influencing mechanisms, namely, thermal
and non-thermal effects. In thermal effects,
high frequency increases tissue temperature and
damages cell development, whereas, in the
non-thermal effects, the passage of its impulses
destruct cell membrane integrity (2). It was,
however, demonstrated that the radiation emitting
from commercial cell phones have non-thermal
effects (3, 4). The impact of cell phone radiation
probably combines thermal and non-thermal
effects. Recent studies have shown a possible role
of cell phone usage in male infertility (3—6). Holding
a cell phone near the reproductive organs such as
the testes may lead to the impairment of testicular
function particularly sperm production and thereby
to male infertility.

Studies have shown that cell phone radiation
induces oxidative stress (OS) in in vivo condition
(7). OS is the imbalance between pro-oxidants
and antioxidants to overcome pro-oxidant. Cell
phone radiation seems to increase the production
of reactive oxygen species (ROS) by disturbing
the ROS metabolism or decreasing the total
antioxidant capacity (TAC) and decreasing the
enzymatic antioxidant activity (8). In this regard,
it was demonstrated that cell phone radiation
increases mitochondrial ROS generation in human
spermatozoa that lead to altering semen quality.
However, previous studies on the effect of
long-term exposure to cell phone radiation on
Malondialdehyde (MDA) levels and enzymatic
antioxidant activities revealed contradictory results
(7, 8). In this regard, Balci and colleagues found that
cell phone-emitted radiation did not change MDA
levels and superoxide dismutase (SOD), GSH-Px,
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and catalase (CAT) activityin lens tissue (9). While
on the other hand, Oktem and colleagues showed
that cell phone exposure increased MDA levels
and decreased SOD, CAT, GSH-Px activities in
renal tissue (8). Also, Ozguner and colleagues
demonstrated that SOD, GSH-Px, and CAT activities
decreased in retina tissue of cell phone-exposed
animals (10). Although previous studies showed that
cell phone usage compromised male infertility (11),
the effect of emitted radiation from cell phones on
the female reproductive system is still unclear.
Therefore, the present study aimed to evaluate
whether the cell phone radiation can affect the
oxidative status and developmental competence of
mice preantral follicles (PFs) during in vitro culture.

2. Materials and Methods

All chemical reagents, unless otherwise stated,
were purchased from Sigma Aldrich (UK). Culture
medium was created using Milli-Q water.

The adult female and male (6—8 wk; 20-25g)
Naval Medical Research Institute mice (NMRI; n=20
and 10, respectively) were housed and bred under
standard conditions: 12 hr light/dark cycle and
temperature condition of 24 °C with adequate food
and water. Female offspring aged 16-18-day old
(n=50) were used for all experiments.

The ovaries of mice were hold in
alpha minimum essential medium (¢-MEM)
supplemented with 25 mM HEPES (4-(2-hydroxy-
ethyl)-1-piperazineethanesulfonic acid) 10% FBS
(fetal bovine serum; Gibco, UK), 100 IU/ml penicillin,

https://doi.org/10.18502/ijrm.v17i9.5099
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75 ug/mL  streptomycin  and 2.2g/L sodium
bicarbonate, The PFs were mechanically isolated
from the ovaries as described previously (12). The
PFs with with a diameter of 130-150 um and oocyte
surrounded with 2-3 layers of intact granulosa cells
with intact basement membrane and at least one
layer of theca cells were selected and allocated
into control and experimental groups. Experimental
groups were exposed to cell phone (Sony Ericsson
K800) with carrier frequency of 1,900 MHz and
specific absorption rate (SAR) ranged from 0.77 to
0.88W/kg in talking mode at 5cm distance from
the culture dish containing PFs for 60 min inside
the CO, incubator (Memmert, Germany). The PFs
were cultured for up to 12 days to evaluate the
developmental parameters. In parallel, some of the
PFs were randomly selected to assess the oxidative
status. All experiments were repeated at least four
times.

PFs were cultured in 25ulL drops of a-MEM
supplemented with 100m IU/mL recombinant
human follicle-stimulating hormone (rhFSH), 5%
FBS, 1% insulin-transferring-selenium (ITS), and
20ng/mL recombinant epidermal growth factor
(rEGF) under embryo-tested mineral oil in an
incubator at 37°C in 5% CO; in air for
10 days as previously described (13). Culture
medium was changed every other day for 10
days. Along with the changing environment, the
growth of PFs was evaluated by calculating the
average of two perpendicular diameters with
an inverted microscope with the precalibrated
ocular micrometer on 2nd and 4th culture. On
the 10th day of the cultivation, culture medium
was changed with 1.5 IU/ml of human chorionic
gonadotropin (hCG) to induce ovulation. After 48 hr,
oocytes were considered regarding maturation
stages as germinal vesicle (GV), germinal vesicle
breakdown (GVBD), and metaphase Il oocytes

https://doi.org/10.18502/ijrm.v17i9.5099
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(MIl), as described previously (14). The antrum
formation and survival rate of cultured PFs were
detected by assessing PFs morphology. Every
lucent area between granulosa cells was noted
as the antral cavity. Also, degenerated PFs were
considered as PFs with either naked oocytes
or without it and the darkness of surrounding
cumulus cells.

2.5.1. Cellular supernatant preparation

For the assessment of SOD, glutathione
peroxidase (GPX), and CAT activities, as well as TAC
and MDA levels, cellular supernatant was prepared
from isolated PFs (n=15 for each replicate), which
were gathered from the medium at initial time and
on days 2, 4, 6, 8, 10, and 12 of culture period as
previously described (15). PFs were briefly pooled
in the microtube containing 1,000 uL of lysis buffer
(pH=8). Lysis buffer composed of EDTA (20 mM),
Tris-HCI (10 mM), and Triton (0.25% V/V) setin pH=8.
Afterward, sonication (50 W for 1min) was carried
out to homogenize the PFs. The cellular mixture
was centrifuged at 4°C with 10,000 g for 20 min.
The cellular supernatant was then collected for
biochemical investigation.

2.5.2. Measurement of TAC levels

Ferric reducing/antioxidant power (FRAP)
method was performed to evaluate TAC as
described previously (15, 16); 2mL of the
tripyridyltriazine (Merck, Germany) as working
solution and 50 uL of the cellular supernatant
incubated in 37°C for 10 min were combined.
Standard solutions were made using 100 mmol/L to
1,000 mmol/L of FeSO4. The absorbance was
detected using spectrophotometer  (Unico,
USA) at 593nm for 10min. Approximately
100-1,000 mmol/L Fe*? (FeSO; x 7 H,0) was
used for the standard solution. TAC was measured

as mol/L.
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2.5.3. Assessment of lipid peroxidation

Lipid peroxidation was evaluated using MDA
level as an index of lipid peroxidation based on
methods previously described (15, 17). The prepared
reagent mixture was composed of 8.1% sodium
dodecyl sulfate, 0.8% thiobarbituric acid, 20%
acetic acid, and 0.76% butylated hydroxytoluene,
which were added to the cellular supernatant and
incubated at 95°C for 60 min, then immediately
cooled to room temperature. Afterward, the
centrifuge was performed for 10 min at 2,000g
absorbance of the resultant organic layer, which
was assessed spectrophotometrically at 532 nm.
MDA levels were presented as nmol/mg protein.

2.5.4. Assessment of enzymatic antioxidants

SOD activity was measured following the
method of (15, 18). A working solution, which
(50 uL)
(14.3 mmol),
nitro blue tetrazolium (NBT, 82.5 umol), potassium

contains the cellular supernatant

supplemented with  methionine
phosphate buffer (50 mmol, pH 7.8), and riboflavin
(2.2 umol), was applied. The reaction was induced
using a fluorescent lamp 15 cm from the test tube
for 10 min. The absorbance of the reaction tube
was then read spectrophotometrically at 560 nm.
Control was defined with reaction mixture without
the cellular supernatant exposed to fluorescent,
while blank was exposed to fluorescent. An
inhibition of 50% NBT reduction was considered
as one unit of SOD. GPX activity was measured
according to the methods of (15, 19). Furthermore,
50uL of the supernatant was supplemented
with a reaction mixture containing the reaction
solution consisting of glutathione (150 wL, 2 mmol),
glutathione reductase (0.15 U/mL), sodium azide
(0.4 mmol/L), (t-BHP,
0.5mmol/L), nicotinamide adenine dinucleotide

tert-butyl hydroperoxide

phosphate (NADPH, 0.3 mmol/L), and potassium
phosphate buffer (25ul). The conversion of
NADPH to NADP was defined as a GPX activity and
measured with absorption changes at 340 nm in
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1min/mg protein. The specific activity of CAT was
assayed based on the disintegration of hydrogen
peroxide through the previously described
methods (15) by calculating absorbance change in
1min as a time unit and presented as pumol/min/mg
protein. The cellular supernatant was added to
the reaction mixture, which was composed of
H,O, (30mM) and potassium phosphate buffer
(10 mM, pH 7.0). Afterward, the absorbance was
read spectrophotometrically at 240 nm. Blank was
phosphate buffer without the cellular supernatant.
The total protein concentration in the cellular
supernatant for the aforementioned biochemical
parameters was measured using Lowry assay

methods (20).

The adult female and male NMRI mice were
obtained from the Pasteur Institute of Iran
(Tehran, Iran). Animal experiments conform to
the institutional standards that fulfill and follows
the Declaration of Helsinki, as revised in Tokyo
2004, and has been approved by the Animal
Care and Use Committee of Damghan University
(No: 122018).

All data were analyzed using SPSS version 24
software package for Windows (SPSS Inc., Chicago,
IL, USA) throgh independent samples T-test, and
p <0.05 was considered statistically significant.

3. Results

The growth rate of PFs is shown in Figure 1. At
the initial time of culture, no significant differences
between the diameter of PFs in the control groups
(143.33 um) and the group exposed to the cell

https://doi.org/10.18502/ijrm.v17i9.5099
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phone (141.08 um, p=0.302) were found. On the
second day, the diameter of PFs in the control group
(228.00 um) was significantly higher compared with
that of the follicles exposed to the cell phone
(172.35 um, p=0.001). The diameter of PFs exposed
to a cell phone on the fourth day (244.17 um) was
significantly lower compared with that of the control
group (363.92 um: p=0.001).

The developmental phases of in vitro-cultured
PFs are depicted in Figure 2 and the rates of
survival, antrum formation, ovulation, and oocyte
maturation are summarized in Tables | and Il. The
rate of degenerated PFs in the control group was
statistically lower compared with that of the treated
group (p=0.003, Table I). The antrum formation
rate of PFs in the control group was significantly
higher than those exposed to cell phone (p=0.002,
Table [). A significant difference (p=0.002) was
found between the ovulation rates of PFs in the
control and cell phone-exposed groups (Table I).
Furthermore, the maturation rate of harvested
oocytes from control PFs was significantly higher
than of those exposed to cell phones. The GVBD
rate in the control group was significantly higher
thanthatinthe cell phone-exposed group (p <0.001,
Table Il). Furthermore, the rate of MIl oocyte of the
control group was significantly higher compared
with the cell phone-exposed group (p<0.001,
Table Il).

The TAC levels in PFs of cell phone-exposed
and control groups during the cultivation period are
shown in Figure 3. No significant difference was
seen in TAC levels in PFs of cell phone-exposed
group compared to that of the control group at
the beginning of cultivation period. Whereas, on
the 2nd, 4th, 6th, 8th, 10th and 12th days of the
culture period, the TAC level in the PFs of the cell
phone-exposed group were significantly lower than
those of the control group (p <0.001).

https://doi.org/10.18502/ijrm.v17i9.5099
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The MDA content in PFs of cell phone-exposed
and control groups during the cultivation period
is shown in Figure 4. The amounts of MDA at
the initial time, the 2", 4t gt 8t 10t and 12t
days of the culture period in the PFs of the cell
phone-exposed group was significantly higher than
those of the control group (p<0.001; Figure 4).
The levels of SOD activity are shown in Figure 5.
The SOD activity decreased in both experimental
groups during the cultivation period. The SOD
activity at the initial time, 4th, 6th, 8th, 10th and 12th
days of the culture period in the PFs of the cell
phone-exposed group was significantly lower than
those of the control group (p<0.05), whereas the
level of SOD activity on the 2nd day of the culture
period was not significantly different between
the control and cell phone-exposed groups
(p=0.079).

The levels of GPX activity are shown in Figure 6.
The GPX activity declined in both the experimental
groups up to the end of the culture. The levels
of GPX activity at the initial time and at the 4th,
6th, 8th, 10th, and 12th days of the cultivation
period were significantly lower in the PFs of the cell
phone-exposed group compared with the control
group (p<0.001). Whereas, on the other hand, the
level of GPX activity on the 2nd day of the culture
period was not significantly different between
the control and cell phone-exposed groups
(p=0.107).

The CAT activity is shown in Figure 7. At
the initial time of the culture period, CAT activity
was significantly higher in the PFs of the cell
phone-exposed group than that of the control group
(p<0.05), whereas the CAT activity on the second
and fourth days of culture in the PFs of the exposed
group was not significantly different from that of
the control group (p>0.05). The CAT activity of PFs
in the cell phone-exposed group was significantly
lower compared with the control group on the 6™,
8th, 10" and 12" days of the cultivation period
(p<0.05).
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Table I. The rates of developmental parameters of preantral follicles

Groups Total Degeneration Antrum
Control 240 62 (25.83% £ 6.16) 186 (77.50% * 6.47)
Exposure to cell phone 240 *117 (48.75% * 6.99) *113 (47.08% £ 9.27)

Data presented as n (% + SD)
*Indicates significant difference compared with the control group (p <0.05)

Table Il. The rates of oocyte maturation

Groups Total GV GVBD
Control 240 30 (12.50% £ 2.15) 55 (22.92% £ 4.38)
Exposure to cell phone 240 *57 (23.75% * 6.72) *16 (6.67% * 3.36)

Data presented as n (% + SD)
GV: Germinal vesicle; GVBD: Germinal vesicle breakdown; MIl: Metaphase Il
*Indicates significant difference compared with the controlgroup (p <0.05)

— control
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Figure 1. Growth changes of cultured PFs at the initial time, as well as on days 2 and 4. *Indicates significant difference.
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Figure 2. Photos of in vitro-cultured PFs on days 2 (a), 4 (b), 6 (c), 8 (d), and 10 (e), and the oocyte ovulated in cultured PFs following
the addition of hCG to culture media (f) shown by the black arrow. Antrum formation is represented by the black arrow. Germinal
vesicle oocytes (g), germinal vesicle breakdown in oocytes (h), and Metaphase Il oocytes (i). (Preantral follicles and oocytes were

visualized by inverted microscope at 400 x magnification).
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Figure 3. The TAC levels of PFs with or without exposure to a cell phone during the cultivation period. Data are expressed as
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Figure 5. The SOD activity of PFs with or without exposure to a cell phone during the cultivation period. Data are expressed as
mean * SD. *Indicates significant difference compared with the control group.
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mean * SD. *Indicates significant difference compared with the control group.
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Figure 7. The CAT activity of PFs with or without exposure to a cell phone during the cultivation period. Data are expressed as
mean * SD. *Indicates significant difference compared with the control group.

4. Discussion

The results of the present study shows that
the rates of the developmental parameters and
enzymatic antioxidant activities of the PFs exposed
to cell phone decreased significantly compared to
those of the control group. In addition, the TAC and
MDA levels decreased and increased, respectively,
inthe exposed PFs compared to those in the control
group. In recent years, the use of cell phones
increased the risks of exposure to electromagnetic
radiation (EMR). Several studies have been
conducted on the effects of electromagnetic waves
on tissue damage, but conflicting results have been
obtained. These contradictions can be attributed
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to the difference in variable frequencies, various
tissues, and exposure times. The effects of EMR
on fertility have several issues. The effects of EMR
on male and female reproductive systems have
been investigated, whereas, the mechanism of its
effect is not well-known. In this regard, Safian and
colleagues showed that the exposure to cell phone
decreased the blastocysts cell viability (21), which in
turn might affect normal embryonic development
(22). However, EMR has been proven to cause
changes to the cell cycle, enzymatic activity, and
integrity of cell membrane (1, 11, 23). Folliculogenesis
and oogenesis are the results of complex
coordination between different cells, hormones,
messengers, and various macromolecules. The
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presented data revealed that cell phone exposure
has a damaging effect on the development of
PFs which, in turn, diminished oocyte maturation
and development. Thus, a high percentage of
the ovulated oocytes from cell phone-exposed
PFs were arrested at the GV stage and failed to
complete nuclear maturation. Incomplete oocyte
nuclear maturation, at least in part, can be
explained by the EMR-induced apoptosis in somatic
cells of PFs, particularly the granulosa cells and
reduced proliferation (24). Although the complete
mechanism of its action is unknown, another
explanation could be the effect of EMR on cellular
signaling, protein misfolding, and finally, cell growth

inhibition (23).
Furthermore, in in vivo condition, cell phone

radiation could induce OS via increased ROS
production and decreased antioxidant enzyme
activity (7, 8). This finding is in agreement with
the results of the present study, which show that
the enzymatic antioxidant (SOD, GPX, and CAT)
significantly altered in cultured PFs after exposure
to cell phone radiation compared with those of
the control group. This result is consistent with
those of other investigations which showed that
prolonged exposure to cell phone decreases the
activities of CAT, SOD, GPX, (7). In this regard, Mao
and colleagues showed that EMR disturbed gene
expressions that are involved in ROS metabolism
and gene-encoding antioxidant enzymes (25).

MDA level as a lipid peroxidation index is the
main feature of oxidative damage. Our results show
that exposure to cell phone radiation increased
MDA content in PFs during the cultivation period,
which, in turn, increased the production of oxidizing
agents. MDA content has a reverse correlation
with TAC (26), which is in agreement with our
finding. Furthermore, recent studies have shown
that exposure to EMR increased MDA levels and
ROS production (11). In this regard, Agarwal and
co-worker showed the effect of cell phone radiation
on semen oxidative profiles (27). Their findings
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indicate that ROS production increased, followed
by increased MDA and decreased TAC, SOD, GPX,
and CAT in semen plasma. Moreover, in this regard,
others observed that exposure to cell phones
reduces enzymatic antioxidant activity (SOD and
GPX) significantly, whereas a significant increase
was observed in MDA levels. They concluded that
excessive production of ROS was the result of cell
phone exposure and had an impact on the fertility
potential of sperm (11).

5. Conclusion

In conclusion, the present study demonstrates
that the exposure to cell phone impaired the
development of the mice PFs during in vitro culture
through inducing OS.
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