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Abstract

Background: Mitochondrial transfer RNAs (tRNA) genes are essential components of
protein biosynthesis. These genes are hotspots for mutations. These mutations are
associated with a wide spectrum of human disease. Many genetic factors are known in
assessment of repeated pregnancy loss (RPL).

Objective: The aim of this study was analysis of tRNA ™ and tRNA " in women with
RPL.

Materials and Methods: The nucleotide variations of threonine and proline were
investigated in 96 women with idiopathic repeated pregnancy loss. The related
mitochondrial area was amplified using a polymerase chain reaction (PCR). The PCR
products were demonstrated by 2% agarose gel electrophoresis, and all the positive
samples were purified and verified by an automated DNA sequencing method.

Results: The sequence analysis revealed 4 mutations in tRNA ™. These mutations were
A15907G in 2 cases (2.08%), A15924G in 3 cases (3.12%), G15928A in 10 cases
(10.42%) as the most common mutations and G15930A in 3 cases (3.12%) as a novel
mutation. Also, the result of tRNAP® sequencing showed the T15972C mutation in 1
woman (1.04%) as a novel mutation.

Conclusion: These tRNAs mutations can alter their steady state level and affect the
structure of tRNASs. It results in protein synthesis defects and, in turn, mitochondrial
dysfunction. The mutations of these genes may help in the assessment of RPL. Further
study of an expanded series of these tRNA mutants is recommended to describe their
etiologic role in idiopathic RPL.
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Introduction

Pregnancy loss is the most common
complication of pregnancy and can be defined as
the unplanned spontaneous loss of pregnancy
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before the fetus be able to survive extra uterine.
Traditionally, repeated pregnancy loss (RPL) has
been defined as at least three or more consecutive
recognized pregnancy loss. Advances in the
detection of early pregnancy revealed that about
70% of human conceptions fail to achieve viability
(1); but clinically recognized pregnancy loss will
occur in 15% of cases before 20 weeks of
gestations (2). About 1 in 300 couples and 0.5-2%
of women involved in RPL (3).
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Many etiological factors are known for RPL.
Usually, most females with a chief complaint of
RPL will be evaluated under the care of
gynecologist for these possible causes. These
factors are responsible for about 50% of RPL.
They include uterine anomalies, chromosomal
aberrations, infectious conditions and endocrine
dysfunction such as luteal phase deficiency and
hypothyroidism (4, 5). Genetic factors are actively
being sought in idiopathic cases. Association
studies have been done to help understand the role
of candidate single genes toward the fetal loss.
Until now, some polymorphisms have been
suggested that increase the chance of pregnancy
loss in women (6-14).

A recent study revealed a higher frequency of
mitochondrial DNA (mtDNA) variations in women
with  RPL (15). Mitochondrias are the
bioenergetics and metabolic centers of the cells.
During a process of high-energy consumption such
as cell proliferation and development, the role of
mitochondria and genome condition and
competency are more important. This role is
conducted through oxidative phosphorylation by
producing ATP (16). Dysfunction in the
mitochondrial respiratory chain causes a various
group of progressive incurable diseases leading to
severe disability and premature death (17).
Increasingly, it is supposed that mitochondrial
dysfunctions can cause oocyte wastage and early
fetal loss by changing the activation of apoptotic
process (18).

The double strand circular mitochondrial DNA
consists of 16,569 base pairs encoding 37 total
genes in human: 22 tRNA, 2 rRNA, and 13 peptide
genes (19). Since the first description of
pathogenic mutations in the mitochondrial genome,
over 200 disease-correlated point mutations and
rearrangements have been found in association
with a variety of mitochondrial cytopathies (19).
More than half of these mutations have been
located in tRNA genes that constitute 9% of the
entire mitochondrial genome (20).

Thus, mitochondrial tRNA genes are hotspots
for mitochondrial pathogenesis and contribute in a
disproportionate way to the etiology of disorders
caused by mitochondrial DNA mutations, which is
conceivable due to their central role in
mitochondrial protein synthesis. Previously, the
significant difference in the prevalence of
spontaneous abortions was shown in the diabetic

RPL patients with tRNA leucine mutation at
position 3243 (21). In comparison, a little less
than half of the mitochondrial mutations affect
protein coding genes, which comprises 68% of the
entire  mitochondrial genome (22). We are
describing mutations on tRNA threonine and
proline in women with idiopathic RPL.

Materials and methods

This research was an analytical descriptive
study. In total 96 women were been diagnosed as
idiopathic RPL at a primary stage of evaluation.
They were referred between September 2006 and
June 2008 to the Research and Clinical Center for
Infertility, Yazd University of Medical Sciences,
Yazd, Iran. All of these women had past history of
three or more consecutive pregnancy loss before
20 weeks of gestation. They had no history of live
birth delivery.

The known causes of RPL were evaluated.
Diagnostic work up was consisting of uterine
sonography, TORCH infections study
(Toxoplasmosis, Rubella,  Cytomegalovirus,
Herpes Simplex virus type Il and Listeria), and
assessment of hormonal status, IgM and I1gG
anticardiolipin, antiphospholipids antibodies and,
paternal and maternal karyotypes. The cases were
explained and encouraged for consent and taking
part in this study. The study was approved by ethic
committee.

A Flexigene blood DNA kit (DNA fast,
QIAGEN, Cat. No. 51204) was used for isolating
DNA from the blood samples based on the
manufacturer’s protocol. The extracted DNA was
kept at 4°C. One primer pairs was used for
amplifying the proline and threonine tRNAs
coding regions. The 5’ end primer of this region
(5’-ATC ATT GGA CAA GTAGCA TC- 3’) from
nucleotide 15791 to 15810, and the 3° end primer
of it (5’-GCT CCG GCT CCA GCG TCT CG-3’)
from nucleotide 91 to 110 was used to amplify this
genome.

The reaction mixture for PCR contained 7 pmol
of each primer, 2lunit of Taq polymerase
(Cinnagene, Iran), each dNTP (Cinnagene, Iran) at
a final concentration of 200 uM, and 2.5 ul PCR
buffer at a final volume of 25 pl by distilled water.
The reactions were done in thermal cycler
(ASTEC- Japan). The PCR condition was as initial
denaturation at 95°C for Smin, then 35 cycles of
denaturation at 94°C for 60s, annealing at 58°C for
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60s, extension at 72°C for 35s, and then final
extension at 72°C for 5min. The PCR products
were evaluated on 2% agarose gel and then these
fragments were purified and sequenced by
Macrogen Company (Seoul, South Korea). The
published revision of Cambridge reference
sequence (http://www.mitomap.org/) was used for
comparing the results by the Chromas and Clustal
X program. The sequence variants not found in the
corresponding record of MITOMAP and other
human databases were defined as novel variations.

Results

Our data showed that the Mean+SD age of the
women with RPL was 28.73+£5.86 years and the
meanzSD for the gestational age at the time of
miscarriages was 10.35+3.75 weeks. These women
had the history of 3 to 11 miscarriages (median 3).

PCR primers from both sides of the threonine
and proline tRNA genome were used to amplify
the related mitochondrial genome sequence. Direct
automated sequencing of the PCR-amplified
mtDNA was done.

The sequence analysis of threonine tRNA
revealed 4 mutations (Table 1) (figure 1).

Table I: Characteristics of proline tRNA mutations in RPL
women.

Gene mutation

tRNA domain ~ Number  Percent (%)

A15907G
D- stem 2 2.08
A15924G
Anticodon stem 3 3.12
G15928A
Anticodon stem 10 10.42
G15930A°
V-loop 2 2.08

2 Novel mutation.

Among them, G15930A mutation was novel at the
V loop in 2 women. Substitution of G to A at
nucleotide 15928 was more common and seen in
10 females (10.42%).

The other two mutations were A15907G and
A15924G that were found in 2 and 3 women
respectively. One mutation was found in proline
tRNA at nucleotide 15972 in one patient, which
change T to C. This mutation was located in D-
Loop Domain of this tRNA and has not been
reported yet (Figure 2).

Figure 1. Results of direct sequencing of tRNA ™ gene. a:
A15907G, b: A15924G, c: G15928A, d: G15930A.

Ll

Figure 2. T15972C novel mutation in tRNA P gene.
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tRNA Thr

D loop

G15930A°
G15928A

Figure 3. Location of the mutations in human mitochondrial
tRNA ™ in women with RPL: the locations of mutations; ?
novel mutation.

Discussion

The tRNAs are small ribonucleic acids (62 to
95 nucleotides) and essential components of
protein synthesis because they function to transport
amino acids to the ribosome, match them to the
codons of mRNAs and facilitate their protein
biosynthesis (23).

In this study tRNA threonine and proline were
investigated. In total, A15907G, A15924G,
G15928A and G15930A substitutions among 65
nucleotides of threonine tRNA, but only one
T15972C substitution in 67 nucleotides of proline
tRNA were found.

Mitochondrial tRNA ™ mutations

The A15907G mutation is located at the D-stem
domain of tRNA ™ (Figure 3). As our knowledge
this mutation is not reported in RPL patients or in
human-related diseases. In one study, this mutation
was reported in 2% of a normal control group as a
variation (24). The A15924G in anticodon stem of
tRNA ™ was seen in 3 women with RPL. This
mutation is reported in some diseases such as:
mitochondrial encephalopathy (25), Parkinson’s
disease (26), Idiopathic cardiomyipathy (27) and
fatal infantile respiratory enzyme deficiency (28).
The other mutation in anticodon stem was
G15928A that was seen in 10 women and was the
most common mutation in tRNA ™ in our study.
Also, the recent mutation is reported in Parkinson’s
disease (26) and multiple sclerosis patients with
severe optic involvement (29). The nucleotides in
anticodon are the least affected bases because it
has been identified only one mutation in one tRNA
affects any of the three bases necessary for
decoding(30). Substitutions at these locations
could cause cellular outcomes too severe to sustain
cell growth. The G15930A in V-loop or accessory
stem was seen in 2 cases. Although it seems the

effect of this substitution is less than the others,
however, identifying its role needs more
evaluation. The other mutations which are reported
previously consisting of: T15908C in deafness-
associated 12S rRNA A1555G mutation (31),
G15915A in mitochondrial encephalomyopathy
(32, 33), A15923G in lethal infantile mitochondrial
myopathy (25), fatal infantile respiratory enzyme
deficiency (28), newborn cardiopulmonary arrest
(34), G15927A in Parkinson’s disease (26),
multiple sclerosis patients with severe optic
involvement (29), deafness-associated 12S rRNA
A1555G mutation (35), G15950A in Parkinson’s
disease (36) and A15951G in LHON-associated
ND4 G11778A mutation (37).

Mitochondrial tRNA P mutation

The T15972C mutation is found at the D-loop
domain of tRNA P°. There are several reports of
this area as A15965G mutation in Parkinson’s
disease (37), C15975T in late-onset ataxia, retinitis
pigmentosa, deafness, leukoencephalopathy and
complex I deficiency (39), C15990T in myopathies
(40), G15995A in cystic fibrosis (41) and T16002C
as a novel mutation (42). However, T15972C is
seen in 1 woman with RPL and is not reported yet.
Two pathways for inducing the mtDNA including
tRNA mutations are considerable. It s
demonstrated that the disorder of mtDNA can be
induced by the defects of nuclear DNA (43).
Another promising pathway is associated with the
reactive oxygen species (ROS). The mitochondrial
genome is extremely susceptible to damages from
continuous exposure to ROS. It has been suggested
that the ROS is produced endogenously from
mitochondrial respiratory chain and have been
considered to be involved in the increased ratio of
point mutant mtDNA (44). It is thought that the
condition is probably induced by the inhibition of
the repair system for ROS mediated damage to
MtDNA, detoxification of ROS, or increase in
ROS production and might be possible causes for
tRNA point mutations of mtDNA. The various
aspects of tRNAs function and the effect of their
different mutations have been evaluated. Disease-
related point mutations could potentially influence
mitochondrial tRNA and affect their primary,
secondary, and tertiary structure. It leads to protein
synthesis defects and, in turn, mitochondrial
dysfunction. Ultimately, these disturbances result
in cellular dysfunction which is more important in
cell proliferation and development. Embryo as a
main material in protein synthesis and related
functions can be more sensitive to these alterations
leading to wastage.
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Conclusion

Further study of an expanded series of these

tRNA mutants is recommended in order to create a
consensus or framework. It would permit the
description of the cellular and phenotypic effects
of tRNA mutations in related diseases. Because of
difficulties to get aborted materials, it was focused
on parents. More studies are necessary to clarify
and show the primary or secondary role of tRNA
mutations in embryonic development.
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