Volume 21, Issue 5 (May 2023)                   IJRM 2023, 21(5): 367-378 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahreiny S S, Harooni E, Dabbagh M R, Ebrahimi R. Circulating serum preptin levels in women with polycystic ovary syndrome: A systematic review and meta-analysis. IJRM 2023; 21 (5) :367-378
URL: http://ijrm.ir/article-1-2650-en.html
1- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. , bahreiny.s@ajums.ac.ir
2- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
3- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
4- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
Abstract:   (940 Views)
Background: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder with complex pathogenesis and metabolic complications, such as insulin resistance. Among the new markers, preptin seems to play a significant role in metabolic disorders.
Objective: This meta-analysis was conducted to determine the relationship between circulating preptin levels and PCOS.
Materials and Methods: A systematic review and meta-analysis was performed to identify relevant articles in electronic databases such as PubMed, Web of Science, Scopus, Cochrane, EMBASE, and the Google Scholar search engine, using a predefined search strategy. A random-effects model was used to combine standard mean difference (SMD) and 95% CI to compare results between groups. Meta-regression and subgroup analysis were also performed to reveal the sources of heterogeneity.
Results: The meta-analysis encompassed a total of 8 studies and 582 participants. The results indicate a statistically significant association between PCOS and serum preptin levels, with a pooled standardized mean difference (SMD = 1.35; 95% CI]: 0.63-2.08; p < 0.001). Further analysis suggested a significant difference in serum preptin levels between women with PCOS and higher homeostatic model assessment for insulin resistance ratio (SMD = 2.40; 95% CI: 1.17-3.63; p < 0.001) within the subgroup.
Conclusion: Our meta-analysis shows that increased serum preptin levels are associated with PCOS, suggesting that preptin may be related to the pathogenesis of PCOS and may be recognized as a novel diagnostic biomarker for PCOS. However, further studies are needed to confirm our results.
Full-Text [PDF 2291 kb]   (729 Downloads) |   |   Full-Text (HTML)  (194 Views)  
Type of Study: Review Article | Subject: Reproductive Pattology

References
1. Zeng X, Xie Y-J, Liu Y-T, Long S-L, Mo Z-C. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin Chim Acta 2020; 502: 214-221. [DOI:10.1016/j.cca.2019.11.003] [PMID]
2. Fauser BCJM, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril 2012; 97: 28-38.e25. [DOI:10.1016/j.fertnstert.2011.09.024] [PMID]
3. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev 2015; 36: 487-525. [DOI:10.1210/er.2015-1018] [PMID] [PMCID]
4. Banting LK, Gibson-Helm M, Polman R, Teede HJ, Stepto NK. Physical activity and mental health in women with polycystic ovary syndrome. BMC Womens Health 2014; 14: 51. [DOI:10.1186/1472-6874-14-51] [PMID] [PMCID]
5. Brutocao C, Zaiem F, Alsawas M, Morrow AS, Murad MH, Javed A. Psychiatric disorders in women with polycystic ovary syndrome: A systematic review and meta-analysis. Endocrine 2018; 62: 318-325. [DOI:10.1007/s12020-018-1692-3] [PMID]
6. Witchel SF, Teede HJ, Peña AS. Curtailing PCOS. Pediatr Res 2020; 87: 353-361. [DOI:10.1038/s41390-019-0615-1] [PMID]
7. Aversa A, La Vignera S, Rago R, Gambineri A, Nappi RE, Calogero AE, et al. Fundamental concepts and novel aspects of polycystic ovarian syndrome: Expert consensus resolutions. Front Endocrinol 2020; 11: 516. [DOI:10.3389/fendo.2020.00516] [PMID] [PMCID]
8. Escobar-Morreale HF. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 2018; 14: 270-284. [DOI:10.1038/nrendo.2018.24] [PMID]
9. Bachelot A. Polycystic ovarian syndrome: Clinical and biological diagnosis. Ann Biol Clin 2016; 74: 661-667. [DOI:10.1684/abc.2016.1184] [PMID]
10. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004; 81: 19-25. [DOI:10.1016/j.fertnstert.2003.10.004]
11. Legro RS, Arslanian SA, Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, et al. Diagnosis and treatment of polycystic ovary syndrome: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2013; 98: 4565-4592. [DOI:10.1210/jc.2013-2350] [PMID] [PMCID]
12. Baldani DP, Skrgatic L, Ougouag R. Polycystic ovary syndrome: Important underrecognised cardiometabolic risk factor in reproductive-age women. Int J Endocrinol 2015; 2015: 786362. [DOI:10.1155/2015/786362] [PMID] [PMCID]
13. Abraham Gnanadass S, Divakar Prabhu Y, Valsala Gopalakrishnan A. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): An update. Arch Gynecol Obstet 2021; 303: 631-643. [DOI:10.1007/s00404-020-05951-2] [PMID]
14. Bannigida DM, Nayak BS, Vijayaraghavan R. Insulin resistance and oxidative marker in women with PCOS. Arch Physiol Biochem 2020; 126: 183-186. [DOI:10.1080/13813455.2018.1499120] [PMID]
15. Deveer R, Engin-Üstün Y, Uysal S, Su FA, Sarıaslan S, Gülerman C, et al. Serum brain natriuretic peptide and C-reactive protein levels in adolescent with polycystic ovary syndrome. Gynecol Endocrinol 2012; 28: 602-605. [DOI:10.3109/09513590.2011.650758] [PMID]
16. Kruszewska J, Laudy-Wiaderny H, Kunicki M. Review of novel potential insulin resistance biomarkers in PCOS patients-the debate is still open. Int J Environ Res Public Health 2022; 19: 2099. [DOI:10.3390/ijerph19042099] [PMID] [PMCID]
17. Celik O, Celik N, Hascalik S, Sahin I, Aydin S, Ozerol E. An appraisal of serum preptin levels in PCOS. Fertil Steril 2011; 95: 314-316. [DOI:10.1016/j.fertnstert.2010.08.058] [PMID]
18. Buchanan CM, Phillips AR, Cooper GJ. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insulin secretion. Biochem J 2001; 360: 431-439. [DOI:10.1042/bj3600431] [PMID] [PMCID]
19. van Doorn J. Insulin-like growth factor-II and bioactive proteins containing a part of the E-domain of pro-insulin-like growth factor-II. Biofactors 2020; 46: 563-578. [DOI:10.1002/biof.1623] [PMID] [PMCID]
20. Aydin S. Three new players in energy regulation: Preptin, adropin and irisin. Peptides 2014; 56: 94-110. [DOI:10.1016/j.peptides.2014.03.021] [PMID]
21. Yang G, Li L, Chen W, Liu H, Boden G, Li K. Circulating preptin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Ann Med 2009; 41: 52-56. [DOI:10.1080/07853890802244142] [PMID]
22. Ali HA, Abbas HJ, Naser AN. Preptin and adropin levels as new predictor in women with polycystic ovary syndrome. J Pharm Sci Res 2018; 10: 3005-3008.
23. Mierzwicka A, Bolanowski M. New peptides players in metabolic disorders. Postepy Hig Med Dosw 2016; 70: 881-886. [DOI:10.5604/17322693.1216271] [PMID]
24. Bednarska S, Siejka A. The pathogenesis and treatment of polycystic ovary syndrome: What's new? Adv Clin Exp Med 2017; 26: 359-367. [DOI:10.17219/acem/59380] [PMID]
25. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev Esp Cardiol 2021; 74: 790-799. [DOI:10.1016/j.recesp.2021.06.016] [PMID]
26. Knobloch K, Yoon U, Vogt PM. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement and publication bias. J Craniomaxillofac Surg 2011; 39: 91-92. [DOI:10.1016/j.jcms.2010.11.001] [PMID]
27. Mehmet Ak, Bertan Demir M. An assesment of relationship between serum preptin levels and anti-mullerian hormone in infertile womens with polycystic ovary syndrome. Ann Clin Anal Med 2022; 13: 779-782. [DOI:10.4328/ACAM.21117]
28. Ascar IF, Hameed AS. Serum prolactin, Preptin, CCL 18 and genetic polymorphisms in Iraqi women with polycystic ovary syndrome. Baghdad Sci J 2021; 18: 1552-1556. [DOI:10.21123/bsj.2021.18.4(Suppl.).1552]
29. Şentürk Ş, Hatirnaz S, Kanat-Pektaş M. Serum preptin and amylin levels with respect to body mass index in polycystic ovary syndrome patients. Med Sci Monit 2018; 24: 7517-7523. [DOI:10.12659/MSM.912957] [PMID] [PMCID]
30. Celik N, Aydin S, Ugur K, Yardim M, Acet M, Yavuzkir S, et al. Patatin-like phospholipase domain containing 3-gene (adiponutrin), preptin, kisspeptin and amylin regulates oocyte developmental capacity in PCOS. Cell Mol Biol 2018; 64: 7-12. [DOI:10.14715/cmb/2017.64.15.2] [PMID]
31. Mierzwicka A, Kuliczkowska-Plaksej J, Kolačkov K, Bolanowski M. Preptin in women with polycystic ovary syndrome. Gynecol Endocrinol 2018; 34: 470-475. [DOI:10.1080/09513590.2017.1409715] [PMID]
32. Bu Z, Kuok K, Meng J, Wang R, Xu B, Zhang H. The relationship between polycystic ovary syndrome, glucose tolerance status and serum preptin level. Reprod Biol Endocrinol 2012; 10: 10. [DOI:10.1186/1477-7827-10-10] [PMID] [PMCID]
33. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-605. [DOI:10.1007/s10654-010-9491-z] [PMID]
34. Andrade C. Mean difference, standardized mean difference (SMD), and their use in meta-analysis: As simple as it gets. J Clin Psychiatry 2020; 81: 20f13681. [DOI:10.4088/JCP.20f13681]
35. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 2016; 27: 1785-1805. [DOI:10.1177/0962280216669183] [PMID]
36. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539-1558. [DOI:10.1002/sim.1186] [PMID]
37. Ades AE, Lu G, Higgins JPT. The interpretation of random-effects meta-analysis in decision models. Med Decis Making 2005; 25: 646-654. [DOI:10.1177/0272989X05282643] [PMID]
38. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-1101. [DOI:10.2307/2533446]
39. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634. [DOI:10.1136/bmj.315.7109.629] [PMID] [PMCID]
40. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. 2nd Ed. UK: John Wiley & Sons; 2019. [DOI:10.1002/9781119536604]
41. Patel S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J Steroid Biochem Mol Biol 2018; 182: 27-36. [DOI:10.1016/j.jsbmb.2018.04.008] [PMID]
42. Xiao C, Li W, Lu T, Wang J, Han J. Preptin promotes proliferation and osteogenesis of MC3T3-E1 cells by upregulating β-catenin expression. IUBMB Life 2019; 71: 854-862. [DOI:10.1002/iub.2016] [PMID]
43. Polak K, Czyzyk A, Simoncini T, Meczekalski B. New markers of insulin resistance in polycystic ovary syndrome. J Endocrinol Invest 2017; 40: 1-8. [DOI:10.1007/s40618-016-0523-8] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb