Volume 10, Issue 3 (7-2012)                   IJRM 2012, 10(3): 193-200 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Talaei-Khozani T, Kharazinejad E, Rohani L, Vojdani Z, Mostafavi Pour Z, Tabei S Z. Expression of pluripotency markers in human granulosa cells after embryonic stem cell extract exposure and epigenetic modification. IJRM 2012; 10 (3) :193-200
URL: http://ijrm.ir/article-1-285-en.html
1- Department of Anatomy, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran , t_talaee@yahoo.com
2- Department of Anatomy, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
3- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
4- Transplantation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (2958 Views)
Background: Epigenetic reprogramming of differentiated cells can modify somatic cells into pluripotential state. Pluripotency can be induced in somatic cells by several approches. One of the easy ways to induce pluripotency is the exposure of the somatic cells to the embryonic stem cell (ESC) extract. Objective: The objective of this study was to increase the efficiency of reprogramming of granulosa cell as a differentiated cell into pluripotential state by using epigenetic modifier agents and extract.
Materials and Methods: The human granulosa cells were cultured in the medium containing 5-Aza-Deoxycytidine and trichostatin A. Then, the cells were exposed to mouse ESCs extract and co-cultured with mouse embryonic fibroblast in the presence of leukemia inhibitory factor (LIF). Alkaline phosphatase test and also immonohistochemistery staining for Oct4, Sox2 and Nanog were performed after 24 and 72 hours and 1 week.
Results: The granulosa cells showed the alkaline phosphatase activity after 24 hours and the enzyme activity maintained for 72 hours. They also expressed Oct4 after 24 hours. The cells also expressed Sox2 and Nanog, 72 hours after exposure to the ESCs extract. The expression of the pluripotency markers decreased after 1 week. It seems that the extract can induce dedifferentiation in granulosa cells and they can express the stem cell markers. Conclusion:   It seems that the inhibitors of the methyl transferase (5-Aza-Deoxycytidine) and histone deacetylase (trichostatin A) could delete the epigenetic markers and prepare the cells for reprogramming by administration of the extract.
Full-Text [PDF 1144 kb]   (661 Downloads) |   |   Full-Text (HTML)  (349 Views)  
Type of Study: Original Article |

References
1. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 27: 810-813. [DOI:10.1038/385810a0]
2. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006; 126: 663-676. [DOI:10.1016/j.cell.2006.07.024]
3. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448: 318-324. [DOI:10.1038/nature05944]
4. Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet 2009; 15: 4340-4349. [DOI:10.1093/hmg/ddp386]
5. Zhao HX, Li Y, Jin HF, Xie L, Liu C, Jiang F, et al. Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/ SOX2/ NANOG. Differentiation 2010; 80: 123-129. [DOI:10.1016/j.diff.2010.03.002]
6. Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 2009; 27: 2667-2674. [DOI:10.1002/stem.201]
7. Tat PA, Sumer H, Jones KL, Upton K, Verma PJ. The efficient generation of induced pluripotent stems (iPS) cells from adult mouse adipose tissue-derived and neural stem cells. Cell Transplant 2010; 19: 525-536. [DOI:10.3727/096368910X491374]
8. Neri T, Monti M, Rebuzzini P, Merico V, Garagna S, Redi CA, et al. Mouse fibroblasts are reprogrammed to Oct-4 and Rex-1 gene expression and alkaline phosphatase activity by embryonic stem cell extracts. Cloning Stem Cells 2007; 9: 394-406. [DOI:10.1089/clo.2006.0011]
9. Bru T, Clarke C, McGrew MJ, Sang HM, Wilmut I, Blow JJ. Rapid induction of pluripotency genes after exposure of human somatic cells to mouse ES cell extracts. Exp Cell Res 2008; 314: 2634-2642. [DOI:10.1016/j.yexcr.2008.05.009]
10. Xu YN, Guan N, Wang ZD, Shan ZY, Shen JL, Zhang QH, et al. Cell extract-induced expression of pluripotent factors in somatic cells. Anat Rec (Hoboken) 2009; 292: 1229-1234. [DOI:10.1002/ar.20919]
11. Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 2005; 16: 5719-5135. [DOI:10.1091/mbc.e05-06-0572]
12. Miyamoto K, Furusawa T, Ohnuki M, Goel S, Tokunaga T, Minami N, et al. Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol Reprod Dev 2007; 74: 1268-1277. [DOI:10.1002/mrd.20691]
13. Hansis C, Barreto G, Maltry N, Niehrs C. Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr Biol 2004; 14: 1475-1480. [DOI:10.1016/j.cub.2004.08.031]
14. Cox JL, Rizzino A. Induced pluripotent stem cells: what lies beyond the paradigm shift? Exp Biol Med 2010; 235: 148-158. [DOI:10.1258/ebm.2009.009267]
15. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 2008; 26: 1269-1275. [DOI:10.1038/nbt.1502]
16. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008; 454: 49-55. [DOI:10.1038/nature07056]
17. Iager AE, Ragina NP, Ross PJ, Beyhan Z, Cunniff K, Rodriguez RM, et al. Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells 2008; 10: 371-379. [DOI:10.1089/clo.2007.0002]
18. Fujii W, Funahashi H. In vitro development of non-enucleated rat oocytes following microinjection of a cumulus nucleus and chemical activation. Zygote 2008; 16: 117-125. [DOI:10.1017/S0967199408004632]
19. Sugawara A, Sugimura S, Hoshino Y, Sato E. Development and spindle formation in rat somatic cell nuclear transfer (SCNT) embryos in vitro using porcine recipient oocytes. Zygote 2009; 17: 195-202. [DOI:10.1017/S0967199409005322]
20. Akagi S, Kaneyama K, Adachi N, Tsuneishi B, Matsukawa K, Watanabe S, et al. Bovine nuclear transfer using fresh cumulus cell nuclei and in vivo- or in vitro-matured cytoplasts. Cloning Stem Cells 2008; 10: 173-180. [DOI:10.1089/clo.2007.0047]
21. Gong SP, Lee ST, Lee EJ, Kim DY, Lee G, Chi SG, et al. Embryonic stem cell-like cells established by culture of adult ovarian cells in mice. Fertil Steril 2010; 93: 2594-2601. [DOI:10.1016/j.fertnstert.2009.12.053]
22. Høyer PE, Byskov AG, Møllgård K. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol 2005; 234: 1-10. [DOI:10.1016/j.mce.2004.09.012]
23. Koh E, Bandle R, Clair T, Roberts DD, Stracke ML. Trichostatin A and 5-aza-20-deoxycytidine switch S1P from an inhibitor to a stimulator of motility through epigenetic regulation of S1P receptors. Cancer Lett 2007; 250: 53-62. [DOI:10.1016/j.canlet.2006.09.017]
24. Freshney RI. Culture of animal cells, a manual of basic technique. 5th Ed. John Wiley and Sons, inc; Hoboken NJ; 2005. [DOI:10.1002/9780471747598]
25. Do JT, Schöler HR. Cell fusion-induced reprogramming. Methods Mol Biol 2010; 636: 179-190. [DOI:10.1007/978-1-60761-691-7_11]
26. Rajasingh J, Lambers E, Hamada H, Bord E, Thorne T, Goukassian I, et al. Cell-free embryonic stem cell extract-mediated derivation of multipotent stem cells from NIH3T3 fibroblasts for functional and anatomical ischemic tissue repair. Circ Res 2008; 102: 107-117. [DOI:10.1161/CIRCRESAHA.108.176115]
27. Kossowska-Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells 2009; 27: 210-219. [DOI:10.1634/stemcells.2008-0233]
28. Zhan W, Liu Z, Liu Y, Ke Q, Ding Y, Lu X, et al. Modulation of rabbit corneal epithelial cells fate using embryonic stem cell extract. Mol Vis 2010; 16: 1154-1161.
29. Hattori N, Imao Y, Nishino K, Hattori N, Ohgane J, Yagi S, et al. Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 2007; 12: 387-396. [DOI:10.1111/j.1365-2443.2007.01058.x]
30. Kim YJ, Ahn KS, Kim M, Shim H. Comparison of potency between histone deacetylase inhibitors trichostatin A and valproic acid on enhancing in vitro development of porcine somatic cell nuclear transfer embryos. In Vitro Cell Dev Biol Anim 2011; 47. DOI: 10.1007/s11626-011-9394-7. [DOI:10.1007/s11626-011-9394-7]
31. Baqir S, Smith LC. Inhibitors of histone deacetylases and DNA methyltransferases alter imprinted gene regulation in embryonic stem cells. Cloning Stem Cells 2006; 8: 200-213. [DOI:10.1089/clo.2006.8.200]
32. Ruau D, Ensenat-Waser R, Dinger TC, Vallabhapurapu DS, Rolletschek A, Hacker C, et al. Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells. Stem Cells 2008; 26: 920-926. [DOI:10.1634/stemcells.2007-0649]
33. Zhang XM, Li QM, Su DJ, Wang N, Shan ZY, Jin LH, et al. RA induces the neural-like cells generated from epigenetic modified NIH/3T3 cells. Mol Biol Rep 2010; 37: 1197-1202. [DOI:10.1007/s11033-009-9489-3]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb