دوره 23، شماره 8 - ( 5-1404 )                   جلد 23 شماره 8 صفحات 612-595 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Etezadi A, Aleyasin A, Heidar Z, Shirkosh P, Hazari V. The evaluation role of T helper 17 cells in pregnancy and abortion: A molecular and future perspective: Narrative review. IJRM 2025; 23 (8) :595-612
URL: http://ijrm.ir/article-1-3383-fa.html
نقش ارزیابی سلول‌های T کمکی ۱۷ در بارداری و سقط جنین: یک دیدگاه مولکولی و آینده: یک مرور روایتی. International Journal of Reproductive BioMedicine. 1404; 23 (8) :595-612

URL: http://ijrm.ir/article-1-3383-fa.html


چکیده:   (109 مشاهده)
سلول T کمکی (Th)17 یکی از سلول‌های ایمنی است که نقش حیاتی در فرآیندهای سلولی، به ویژه سقط جنین، ایفا می‌کند. این سلول بسیاری از سلول‌ها و واسطه‌های سیستم ایمنی را از طریق ژن‌ها و مسیرهای مولکولی تنظیم می‌کند. این تحقیق عملکرد Th17 را در بارداری و سقط جنین ارزیابی می‌کند. این سلول سیستم ایمنی به طور معمول فعالیت سلول‌های ایمنی و پاسخ‌های التهابی را تنظیم می‌کند. سلول‌های Th17 در شرایط بیماری‌زا بر دسیدوا، تشکیل جفت و تهاجم تروفوبلاست تأثیر می‌گذارند. Th17 عمدتاً از طریق ترشح اینترلوکین (IL) -17 عمل می‌کند. این سلول مسیرهای مولکولی و ترشح پروژسترون را از طریق مسیرهای مولکولی و ژن‌ها مختل می‌کند. علاوه بر این، نشان داده شده است که سطح IL-17 به طور مداوم در طول دوران بارداری زنان باردار سالم افزایش می‌یابد. از طریق ادغام و خلاصه مقالات، نتیجه می‌گیریم که بارداری موفق نیاز به پاسخ متعادل سلول‌های Th17 دارد. با این حال، از آنجایی که مکانیسم‌های دقیق سلول‌های Th17 در دوران بارداری هنوز مشخص نیست، تحقیقات بیشتری برای روشن شدن این موضوع مورد نیاز است. علاوه بر این، رابطه بین IL-17 و عوارض بارداری پیچیده است و نیاز به بررسی بیشتر دارد. از این نظر، واکنش ایمنی مادر در حفظ تعادل پاسخ ایمنی Th17 نقش دارد.
نوع مطالعه: Review article |

فهرست منابع
1. Dickens BM. Post-abortion care: Ethical and legal duties. Int J Gynaecol Obstet 2019; 147: 273-278. [DOI:10.1002/ijgo.12951] [PMID]
2. Mazza D, Burton G, Wilson S, Boulton E, Fairweather J, Black KI. Medical abortion. Aust J Gen Pract 2020; 49: 324-330. [DOI:10.31128/AJGP-02-20-5223] [PMID]
3. Bearak J, Popinchalk A, Ganatra B, Moller A-B, Tunçalp Ö, Beavin C, et al. Unintended pregnancy and abortion by income, region, and the legal status of abortion: Estimates from a comprehensive model for 1990-2019. Lancet Glob Health 2020; 8: e1152-e1161. [DOI:10.1016/S2214-109X(20)30315-6] [PMID]
4. Wolrd Health Organization. Air quality guidelines for Europe. Denmark: World Health Organiation Press; 2020.
5. Triggianese P, Perricone C, Chimenti MS, De Carolis C, Perricone R. Innate immune system at the maternal-fetal interface: Mechanisms of disease and targets of therapy in pregnancy syndromes. Am J Reprod Immunol 2016; 76: 245-257. [DOI:10.1111/aji.12509] [PMID]
6. Zhang X, Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol 2021; 12: 728291. [DOI:10.3389/fimmu.2021.728291] [PMID] [PMCID]
7. Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J. T Helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front Immunol 2020; 11: 2025. [DOI:10.3389/fimmu.2020.02025] [PMID] [PMCID]
8. Li D, Zheng L, Zhao D, Xu Y, Wang Y. The role of immune cells in recurrent spontaneous abortion. Reprod Sci 2021; 28: 3303-3315. [DOI:10.1007/s43032-021-00599-y] [PMID] [PMCID]
9. Liu J, Dong P, Wang S, Li J. Natural killer, natural killer T, helper and cytotoxic T cells in the decidua from recurrent spontaneous abortion with normal and abnormal chromosome karyotypes. Biochem Biophys Res Commun 2019; 508: 354-360. [DOI:10.1016/j.bbrc.2018.11.156] [PMID]
10. Sereshki N, Gharagozloo M, Ostadi V, Ghahiri A, Roghaei MA, Mehrabian F, et al. Variations in T-helper 17 and regulatory T cells during the menstrual cycle in peripheral blood of women with recurrent spontaneous abortion. Int J Fertil Steril 2014; 8: 59-66.
11. Wang WJ, Hao CF, Yi L, Yin GJ, Bao SH, Qiu LH, et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol 2010; 84: 164-170. [DOI:10.1016/j.jri.2009.12.003] [PMID]
12. Fu B, Tian Z, Wei H. TH17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol Immunol 2014; 11: 564-570. [DOI:10.1038/cmi.2014.54] [PMID] [PMCID]
13. Bedoya SK, Lam B, Lau K, Larkin J. Th17 cells in immunity and autoimmunity. Clin Dev Immunol 2013; 2013: 986789. [DOI:10.1155/2013/986789] [PMID] [PMCID]
14. Duhen R, Glatigny S, Arbelaez CA, Blair TC, Oukka M, Bettelli E. Cutting edge: The pathogenicity of IFN-γ-producing Th17 cells is independent of T-bet. J Immunol 2013; 190: 4478-4482. https://doi.org/10.4049/jimmunol.190.Supp.191.10 [DOI:10.4049/jimmunol.1203172] [PMID]
15. Pappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin-17 cytokine family: Critical players in host defence and inflammatory diseases. Immunology 2011; 134: 8-16. [DOI:10.1111/j.1365-2567.2011.03465.x] [PMID] [PMCID]
16. Yang J, Sundrud MS, Skepner J, Yamagata T. Targeting Th17 cells in autoimmune diseases. Trends Pharmacol Sci 2014; 35: 493-500. [DOI:10.1016/j.tips.2014.07.006] [PMID]
17. Abusleme L, Moutsopoulos NM. IL-17: Overview and role in oral immunity and microbiome. Oral Dis 2017; 23: 854-865. [DOI:10.1111/odi.12598] [PMID] [PMCID]
18. Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: Preclinical and clinical findings. J Invest Dermatol 2013; 133: 17-26. [DOI:10.1038/jid.2012.194] [PMID] [PMCID]
19. Hu Y, Shen F, Crellin NK, Ouyang W. The IL-17 pathway as a major therapeutic target in autoimmune diseases. Ann N Y Acad Sci 2011; 1217: 60-76. [DOI:10.1111/j.1749-6632.2010.05825.x] [PMID]
20. Krueger JG, Fretzin S, Suárez-Fariñas M, Haslett PA, Phipps KM, Cameron GS, et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol 2012; 130: 145-154. [DOI:10.1016/j.jaci.2012.04.024] [PMID] [PMCID]
21. Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Ann Rev Pathol 2013; 8: 477-512. [DOI:10.1146/annurev-pathol-011110-130318] [PMID] [PMCID]
22. Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal immunological adaptation during normal pregnancy. Front Immunol 2020; 11: 575197. [DOI:10.3389/fimmu.2020.575197] [PMID] [PMCID]
23. Mori M, Bogdan A, Balassa T, Csabai T, Szekeres-Bartho J. The decidua-the maternal bed embracing the embryo-maintains the pregnancy. Semin Immunopathol 2016; 38: 635-649. [DOI:10.1007/s00281-016-0574-0] [PMID] [PMCID]
24. Nancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 2012; 336: 1317-1321. [DOI:10.1126/science.1220030] [PMID] [PMCID]
25. Llorca T, Ruiz-Magaña MJ, Martinez-Aguilar R, García-Valdeavero OM, Rodríguez-Doña L, Abadia-Molina AC, et al. Decidualized human decidual stromal cells inhibit chemotaxis of activated T cells: A potential mechanism of maternal-fetal immune tolerance. Front Immunol 2023; 14: 1223539. [DOI:10.3389/fimmu.2023.1223539] [PMID] [PMCID]
26. Heidar Z, Hamzepour N, Zadeh Modarres S, Mirzamoradi M, Aghadavod E, Pourhanifeh MH, et al. The effects of selenium supplementation on clinical symptoms and gene expression related to inflammation and vascular endothelial growth factor in infertile women candidate for in vitro fertilization. Biol Trace Elem Res 2020; 193: 319-325. [DOI:10.1007/s12011-019-01715-5] [PMID]
27. Zhang J, Chen Z, Smith GN, Croy BA. Natural killer cell-triggered vascular transformation: Maternal care before birth? Cell Mol Immunol 2011; 8: 1-11. [DOI:10.1038/cmi.2010.38] [PMID] [PMCID]
28. Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-Martinez H, Berg G, et al. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol 2015; 194: 1534-1544. [DOI:10.4049/jimmunol.1401536] [PMID]
29. Oettel A, Lorenz M, Stangl V, Costa SD, Zenclussen AC, Schumacher A. Human umbilical vein endothelial cells foster conversion of CD4+CD25-Foxp3- T cells into CD4+Foxp3+ regulatory T cells via transforming growth factor-β. Sci Rep 2016; 6: 23278. [DOI:10.1038/srep23278] [PMID] [PMCID]
30. Ramhorst R, Fraccaroli L, Aldo P, Alvero AB, Cardenas I, Leirós CP, et al. Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells. Am J Reprod Immunol 2012; 67: 17-27. [DOI:10.1111/j.1600-0897.2011.01056.x] [PMID] [PMCID]
31. Jamilian M, Mansury S, Bahmani F, Heidar Z, Amirani E, Asemi Z. The effects of probiotic and selenium co-supplementation on parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. J Ovarian Res 2018; 11: 80. [DOI:10.1186/s13048-018-0457-1] [PMID] [PMCID]
32. Aldo PB, Racicot K, Craviero V, Guller S, Romero R, Mor G. Trophoblast induces monocyte differentiation into CD14+/CD16+ macrophages. Am J Reprod Immunol 2014; 72: 270-284. [DOI:10.1111/aji.12288] [PMID] [PMCID]
33. Repnik U, Tilburgs T, Roelen DL, van der Mast BJ, Kanhai HH, Scherjon S, et al. Comparison of macrophage phenotype between decidua basalis and decidua parietalis by flow cytometry. Placenta 2008; 29: 405-412. [DOI:10.1016/j.placenta.2008.02.004] [PMID]
34. Houser BL, Tilburgs T, Hill J, Nicotra ML, Strominger JL. Two unique human decidual macrophage populations. J Immunol 2011; 186: 2633-2642. [DOI:10.4049/jimmunol.1003153] [PMID] [PMCID]
35. Adams Waldorf KM, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction 2013; 146: R151-162. [DOI:10.1530/REP-13-0232] [PMID] [PMCID]
36. Maródi L. Innate cellular immune responses in newborns. Clin Immunol 2006; 118: 137-144. [DOI:10.1016/j.clim.2005.10.012] [PMID]
37. Wu X, Dao Thi VL, Huang Y, Billerbeck E, Saha D, Hoffmann HH, et al. Intrinsic immunity shapes viral resistance of stem cells. Cell 2018; 172: 423-438. [DOI:10.1016/j.cell.2017.11.018] [PMID] [PMCID]
38. Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13: 1042368. [DOI:10.3389/fimmu.2022.1042368] [PMID] [PMCID]
39. Jiang LQ, Xia T, Hu YH, Sun MS, Yan S, Lei CQ, et al. IFITM3 inhibits virus-triggered induction of type I interferon by mediating autophagosome-dependent degradation of IRF3. Cell Mol Immunol 2018; 15: 858-867. [DOI:10.1038/cmi.2017.15] [PMID] [PMCID]
40. Dasari P, Zola H, Nicholson IC. Expression of Toll-like receptors by neonatal leukocytes. Pediatr Allergy Immunol 2011; 22: 221-228. [DOI:10.1111/j.1399-3038.2010.01091.x] [PMID]
41. Stras SF, Werner L, Toothaker JM, Olaloye OO, Oldham AL, McCourt CC, et al. Maturation of the human intestinal immune system occurs early in fetal development. Dev Cell 2019; 51: 357-373. [DOI:10.1016/j.devcel.2019.09.008] [PMID]
42. Chen J, Liang Y, Yi P, Xu L, Hawkins HK, Rossi SL, et al. Outcomes of congenital Zika disease depend on timing of infection and maternal-fetal interferon action. Cell Rep 2017; 21: 1588-1599. [DOI:10.1016/j.celrep.2017.10.059] [PMID] [PMCID]
43. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations(*). Annu Rev Immunol 2010; 28: 445-489. [DOI:10.1146/annurev-immunol-030409-101212] [PMID] [PMCID]
44. Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol 2007; 19: 281-286. [DOI:10.1016/j.coi.2007.04.005] [PMID]
45. Wang M, Tian T, Yu S, He N, Ma D. Th17 and Treg cells in bone related diseases. Clin Dev Immunol 2013; 2013: 203705. [DOI:10.1155/2013/203705] [PMID] [PMCID]
46. Esfandyari S, Aleyasin A, Noroozi Z, Taheri M, Khodarahmian M, Eslami M, et al. The protective effect of sulforaphane against oxidative stress through activation of NRF2/ARE pathway in human granulosa cells. Cell J 2021; 23: 692.
47. Fang D, Healy A, Zhu J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2022; 13: 1081153. [DOI:10.3389/fimmu.2022.1081153] [PMID] [PMCID]
48. Ruddy MJ, Wong GC, Liu XK, Yamamoto H, Kasayama S, Kirkwood KL, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J Biol Chem 2004; 279: 2559-2567. [DOI:10.1074/jbc.M308809200] [PMID]
49. Pesce B, Ribeiro CH, Larrondo M, Ramos V, Soto L, Catalán D, et al. TNF-α affects signature cytokines of Th1 and Th17 T cell subsets through differential actions on TNFR1 and TNFR2. Int J Mol Sci 2022; 23: 9306. [DOI:10.3390/ijms23169306] [PMID] [PMCID]
50. Khan D, Ansar Ahmed S. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet 2015; 6: 236. [DOI:10.3389/fgene.2015.00236] [PMID] [PMCID]
51. Zhang F, Meng G, Strober W. Interactions among the transcription factors Runx1, ROR gammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 2008; 9: 1297-1306. [DOI:10.1038/ni.1663] [PMID] [PMCID]
52. Zhao Q, Xiao X, Wu Y, Wei Y, Zhu LY, Zhou J, et al. Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol 2011; 41: 2314-2322. [DOI:10.1002/eji.201041282] [PMID]
53. Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest 2006; 116: 1218-1222. [DOI:10.1172/JCI28508] [PMID] [PMCID]
54. Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007; 448: 484-487. [DOI:10.1038/nature05970] [PMID] [PMCID]
55. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 2010; 63: 601-610. [DOI:10.1111/j.1600-0897.2010.00852.x] [PMID]
56. Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol 2017; 17: 469-482. [DOI:10.1038/nri.2017.64] [PMID]
57. Murphy KM, Weaver C. Janeway's immunobiology. 9th ED. New York: Garland Science; 2017. [DOI:10.1007/978-3-662-56004-4]
58. Chavan AR, Griffith OW, Wagner GP. The inflammation paradox in the evolution of mammalian pregnancy: Turning a foe into a friend. Curr Opin Genet Dev 2017; 47: 24-32. [DOI:10.1016/j.gde.2017.08.004] [PMID]
59. Kaminski VL, Ellwanger JH, Matte MCC, Savaris RF, Vianna P, Chies JAB. IL-17 blood levels increase in healthy pregnancy but not in spontaneous abortion. Mol Biol Rep 2018; 45: 1565-1568. [DOI:10.1007/s11033-018-4268-7] [PMID]
60. Martínez-García EA, Chávez-Robles B, Sánchez-Hernández PE, Núñez-Atahualpa L, Martín-Máquez BT, Muñoz-Gómez A, et al. IL-17 increased in the third trimester in healthy women with term labor. Am J Reprod Immunol 2011; 65: 99-103. [DOI:10.1111/j.1600-0897.2010.00893.x] [PMID]
61. Pongcharoen S, Supalap K. Interleukin-17 increased progesterone secretion by JEG-3 human choriocarcinoma cells. Am J Reprod Immunol 2009; 61: 261-264. [DOI:10.1111/j.1600-0897.2009.00693.x] [PMID]
62. Nadkarni S, Smith J, Sferruzzi-Perri AN, Ledwozyw A, Kishore M, Haas R, et al. Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy. Proc Natl Acad Sci USA 2016; 113: E8415-E8424. [DOI:10.1073/pnas.1611944114] [PMID] [PMCID]
63. Gupta AK, Hasler P, Holzgreve W, Hahn S. Neutrophil NETs: A novel contributor to preeclampsia-associated placental hypoxia? Semin Immunopathol 2007; 29: 163-167. [DOI:10.1007/s00281-007-0073-4] [PMID]
64. Hebeda CB, Savioli AC, Scharf P, de Paula-Silva M, Gil CD, Farsky SHP, et al. Neutrophil depletion in the pre-implantation phase impairs pregnancy index, placenta and fetus development. Front Immunol 2022; 13: 969336. [DOI:10.3389/fimmu.2022.969336] [PMID] [PMCID]
65. El Shahaway AA, Abd Elhady RR, Abdelrhman AA, Yahia S. Role of maternal serum interleukin 17 in preeclampsia: Diagnosis and prognosis. J Inflammat Res 2019; 12: 175-180. [DOI:10.2147/JIR.S206800] [PMID] [PMCID]
66. Hosseini S, Shokri F, Ansari Pour S, Jeddi-Tehrani M, Nikoo S, Yousefi M, et al. A shift in the balance of T17 and Treg cells in menstrual blood of women with unexplained recurrent spontaneous abortion. J Reprod Immunol 2016; 116: 13-22. [DOI:10.1016/j.jri.2016.03.001] [PMID]
67. Wang WJ, Liu FJ, Xin L, Hao CF, Bao HC, Qu QL, et al. Adoptive transfer of pregnancy-induced CD4+CD25+ regulatory T cells reverses the increase in abortion rate caused by interleukin 17 in the CBA/JxBALB/c mouse model. Hum Reprod 2014; 29: 946-952. [DOI:10.1093/humrep/deu014] [PMID]
68. Saifi B, Rezaee SA, Tajik N, Ahmadpour ME, Ashrafi M, Vakili R, et al. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reprod Biomed Online 2014; 29: 481-489. [DOI:10.1016/j.rbmo.2014.06.008] [PMID]
69. Massoudifar A, Alimi N, Boostan A, Etezadi A, Haji Seid Javadi E, Naghdipour Mirsadeghi M. Investigating the relationship between the perception of labor pain and the number of deliveries. J Obstet Gynecol Cancer Res 2023; 8: 549-555. [DOI:10.30699/jogcr.8.6.549]
70. Wang WJ, Liu FJ, Qu HM, Hao CF, Qu QL, Xiong W, et al. Regulation of the expression of Th17 cells and regulatory T cells by IL-27 in patients with unexplained early recurrent miscarriage. J Reprod Immunol 2013; 99: 39-45. [DOI:10.1016/j.jri.2013.04.002] [PMID]
71. Fedorka CE, El-Sheikh Ali H, Walker OF, Scoggin KE, Dini P, Loux SC, et al. The imbalance of the Th17/Treg axis following equine ascending placental infection. J Reprod Immunol 2021; 144: 103268. [DOI:10.1016/j.jri.2020.103268] [PMID]
72. Ito M, Nakashima A, Hidaka T, Okabe M, Bac ND, Ina S, et al. A role for IL-17 in induction of an inflammation at the fetomaternal interface in preterm labour. J Reprod Immunol 2010; 84: 75-85. [DOI:10.1016/j.jri.2009.09.005] [PMID]
73. Hazari V, Sarvi F, Alyasin A, Agha-Hosseini M, Hosseinimousa S. Enhancing endometrial receptivity in FET cycles: Exploring the influence of endometrial and subendometrial blood flow along with endometrial volume. Front Med 2024; 11: 1260960. [DOI:10.3389/fmed.2024.1260960] [PMID] [PMCID]
74. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 2016; 351: 933-939. [DOI:10.1126/science.aad0314] [PMID] [PMCID]
75. Tang C, Hu W. The role of Th17 and Treg cells in normal pregnancy and unexplained recurrent spontaneous abortion (URSA): New insights into immune mechanisms. Placenta 2023; 142: 18-26. [DOI:10.1016/j.placenta.2023.08.065] [PMID]
76. Ramathal CY, Bagchi IC, Taylor RN, Bagchi MK. Endometrial decidualization: Of mice and men. Semin Reprod Med 2010; 28: 17-26. [DOI:10.1055/s-0029-1242989] [PMID] [PMCID]
77. Doisne JM, Balmas E, Boulenouar S, Gaynor LM, Kieckbusch J, Gardner L, et al. Composition, development, and function of uterine innate lymphoid cells. J Immunol 2015; 195: 3937-3945. [DOI:10.4049/jimmunol.1500689] [PMID] [PMCID]
78. Weisblum Y, Panet A, Zakay-Rones Z, Haimov-Kochman R, Goldman-Wohl D, Ariel I, et al. Modeling of human cytomegalovirus maternal-fetal transmission in a novel decidual organ culture. J Virol 2011; 85: 13204-13213. [DOI:10.1128/JVI.05749-11] [PMID] [PMCID]
79. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 2018; 563: 347-353. [DOI:10.1038/s41586-018-0698-6] [PMID] [PMCID]
80. Wu HX, Jin LP, Xu B, Liang SS, Li DJ. Decidual stromal cells recruit Th17 cells into decidua to promote proliferation and invasion of human trophoblast cells by secreting IL-17. Cell Mol Immunol 2014; 11: 253-262. [DOI:10.1038/cmi.2013.67] [PMID] [PMCID]
81. Lin Z, Shi JL, Chen M, Zheng ZM, Li MQ, Shao J. CCL2: An important cytokine in normal and pathological pregnancies: A review. Front Immunol 2022; 13: 1053457. [DOI:10.3389/fimmu.2022.1053457] [PMID] [PMCID]
82. Wang A, Wang Z, Cao Y, Cheng S, Chen H, Bunjhoo H, et al. CCL2/CCR2-dependent recruitment of Th17 cells but not Tc17 cells to the lung in a murine asthma model. Int Arch Allergy Immunol 2015; 166: 52-62. [DOI:10.1159/000371764] [PMID]
83. van Beelen AJ, Teunissen MB, Kapsenberg ML, de Jong EC. Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 2007; 7: 374-381. [DOI:10.1097/ACI.0b013e3282ef869e] [PMID]
84. Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL. Cutting edge: Lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 2005; 175: 7796-7799. [DOI:10.4049/jimmunol.175.12.7796] [PMID]
85. Zhang Z, Yang Y, Lv X, Liu H. Interleukin-17 promotes proliferation, migration, and invasion of trophoblasts via regulating PPAR-γ/RXR-α/Wnt signaling. Bioengineered 2022; 13: 1224-1234. [DOI:10.1080/21655979.2021.2020468] [PMID] [PMCID]
86. Muter J, Kong CS, Brosens JJ. The role of decidual subpopulations in implantation, menstruation and miscarriage. Front Reprod Health 2021; 3: 804921. [DOI:10.3389/frph.2021.804921] [PMID] [PMCID]
87. Bulletti C, Bulletti FM, Sciorio R, Guido M. Progesterone: The key factor of the beginning of life. Int J Mol Sci 2022; 23: 14138. [DOI:10.3390/ijms232214138] [PMID] [PMCID]
88. Goldman S, Shalev E. Progesterone receptor profile in the decidua and fetal membrane. Front Biosci 2007; 12: 634-648. [DOI:10.2741/2088] [PMID]
89. Chappell CA, Rohan LC, Moncla BJ, Wang L, Meyn LA, Bunge K, et al. The effects of reproductive hormones on the physical properties of cervicovaginal fluid. Am J Obstet Gynecol 2014; 211: 226. [DOI:10.1016/j.ajog.2014.03.041] [PMID] [PMCID]
90. Lombardelli L, Logiodice F, Aguerre-Girr M, Kullolli O, Haller H, Casart Y, et al. Interleukin-17-producing decidual CD4+ T cells are not deleterious for human pregnancy when they also produce interleukin-4. Clin Mol Allergy 2016; 14: 1. [DOI:10.1186/s12948-016-0039-y] [PMID] [PMCID]
91. Logiodice F, Lombardelli L, Kullolli O, Haller H, Maggi E, Rukavina D, et al. Decidual interleukin-22-producing CD4+ T cells (Th17/Th0/IL-22+ and Th17/Th2/IL-22+, Th2/IL-22+, Th0/IL-22+), which also produce IL-4, are involved in the success of pregnancy. Int J Mol Sci 2019; 20: 428. [DOI:10.3390/ijms20020428] [PMID] [PMCID]
92. Liu F, Guo J, Tian T, Wang H, Dong F, Huang H, et al. Placental trophoblasts shifted Th1/Th2 balance toward Th2 and inhibited Th17 immunity at fetomaternal interface. APMIS 2011; 119: 597-604. [DOI:10.1111/j.1600-0463.2011.02774.x] [PMID]
93. Santner-Nanan B, Peek MJ, Khanam R, Richarts L, Zhu E, Fazekas de St Groth B, et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol 2009; 183: 7023-7030. [DOI:10.4049/jimmunol.0901154] [PMID]
94. Crome SQ, Wang AY, Levings MK. Translational mini-review series on Th17 cells: Function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol 2010; 159: 109-119. [DOI:10.1111/j.1365-2249.2009.04037.x] [PMID] [PMCID]
95. Travis OK, White D, Pierce WA, Ge Y, Stubbs CY, Spradley FT, et al. Chronic infusion of interleukin-17 promotes hypertension, activation of cytolytic natural killer cells, and vascular dysfunction in pregnant rats. Physiol Rep 2019; 7: e14038. [DOI:10.14814/phy2.14038] [PMID] [PMCID]
96. Gaffen SL. An overview of IL-17 function and signaling. Cytokine 2008; 43: 402-407. [DOI:10.1016/j.cyto.2008.07.017] [PMID] [PMCID]
97. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12: 1065-1074. [DOI:10.1038/nm1452] [PMID]
98. Saito S, Shiozaki A, Sasaki Y, Nakashima A, Shima T, Ito M. Regulatory T cells and regulatory natural killer (NK) cells play important roles in feto-maternal tolerance. Semin Immunopathol 2007; 29: 115-122. [DOI:10.1007/s00281-007-0067-2] [PMID]
99. Fu B, Li X, Sun R, Tong X, Ling B, Tian Z, et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc Natl Acad Sci USA 2013; 110: E231-240. [DOI:10.1073/pnas.1206322110] [PMID] [PMCID]
100. Jabrane-Ferrat N, Siewiera J. The up side of decidual natural killer cells: New developments in immunology of pregnancy. Immunology 2014; 141: 490-497. [DOI:10.1111/imm.12218] [PMID] [PMCID]
101. Degner K, Magness RR, Shah DM. Establishment of the human uteroplacental circulation: A historical perspective. Reprod Sci 2017; 24: 753-761. [DOI:10.1177/1933719116669056] [PMID] [PMCID]
102. Molvarec A, Czegle I, Szijártó J, Rigó JJr. Increased circulating interleukin-17 levels in preeclampsia. J Reprod Immunol 2015; 112: 53-57. [DOI:10.1016/j.jri.2015.05.007] [PMID]
103. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: From mechanisms to disease. Ann Rev Immunol 2012; 30: 459-489. [DOI:10.1146/annurev-immunol-020711-074942] [PMID]
104. Bär E, Whitney PG, Moor K, Reis E, Sousa C, LeibundGut-Landmann S. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity 2014; 40: 117-127. [DOI:10.1016/j.immuni.2013.12.002] [PMID]
105. Martinvalet D, Zhu P, Lieberman J. Granzyme a induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 2005; 22: 355-370. [DOI:10.1016/j.immuni.2005.02.004] [PMID]
106. Guo Y, Chen J, Zhao T, Fan Z. Granzyme K degrades the redox/DNA repair enzyme Ape1 to trigger oxidative stress of target cells leading to cytotoxicity. Mol Immunol 2008; 45: 2225-2235. [DOI:10.1016/j.molimm.2007.11.020] [PMID]
107. Jacquemin G, Margiotta D, Kasahara A, Bassoy EY, Walch M, Thiery J, et al. Granzyme B-induced mitochondrial ROS are required for apoptosis. Cell Death Diff 2015; 22: 862-874. [DOI:10.1038/cdd.2014.180] [PMID] [PMCID]
108. Martinvalet D. ROS signaling during granzyme B-mediated apoptosis. Mol Cell Oncol 2015; 2: e992639. [DOI:10.4161/23723556.2014.992639] [PMID] [PMCID]
109. Figueiredo AS, Schumacher A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 2016; 148: 13-21. [DOI:10.1111/imm.12595] [PMID] [PMCID]
110. Pourakbari R, Parhizkar F, Soltani-Zangbar MS, Samadi P, Zamani M, Aghebati-Maleki L, et al. Preeclampsia-derived exosomes imbalance the activity of Th17 and Treg in PBMCs from healthy pregnant women. Reprod Sci 2023; 30: 1186-1197. [DOI:10.1007/s43032-022-01059-x] [PMID]
111. Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod 2004; 10: 347-353. [DOI:10.1093/molehr/gah044] [PMID]
112. Somerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 2004; 112: 38-43. [DOI:10.1111/j.1365-2567.2004.01869.x] [PMID] [PMCID]
113. Rowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 2012; 490: 102-106. [DOI:10.1038/nature11462] [PMID] [PMCID]
114. Fife BT, Guleria I, Gubbels Bupp M, Eagar TN, Tang Q, Bour-Jordan H, et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 2006; 203: 2737-2747. [DOI:10.1084/jem.20061577] [PMID] [PMCID]
115. Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev 2013; 12: 1091-1100. [DOI:10.1016/j.autrev.2013.05.003] [PMID]
116. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010; 236: 219-242. [DOI:10.1111/j.1600-065X.2010.00923.x] [PMID] [PMCID]
117. Guleria I, Khosroshahi A, Ansari MJ, Habicht A, Azuma M, Yagita H, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med 2005; 202: 231-237. [DOI:10.1084/jem.20050019] [PMID] [PMCID]
118. Wafula PO, Teles A, Schumacher A, Pohl K, Yagita H, Volk HD, et al. PD-1 but not CTLA-4 blockage abrogates the protective effect of regulatory T cells in a pregnancy murine model. Am J Reprod Immunol 2009; 62: 283-292. [DOI:10.1111/j.1600-0897.2009.00737.x] [PMID]
119. Habicht A, Dada S, Jurewicz M, Fife BT, Yagita H, Azuma M, et al. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol 2007; 179: 5211-5219. [DOI:10.4049/jimmunol.179.8.5211] [PMID]
120. Wang WJ, Salazar Garcia MD, Deutsch G, Sung N, Yang X, He Q, et al. PD-1 and PD-L1 expression on T-cell subsets in women with unexplained recurrent pregnancy losses. Am J Reprod Immunol 2020; 83: e13230. [DOI:10.1111/aji.13230] [PMID]
121. Cabrera-García L, Cruz-Melguizo S, Ruiz-Antorán B, Torres F, Velasco A, Martínez-Payo C, et al. Evaluation of two treatment strategies for the prevention of preterm birth in women identified as at risk by ultrasound (PESAPRO Trial): Study protocol for a randomized controlled trial. Trials 2015; 16: 427. [DOI:10.1186/s13063-015-0964-y] [PMID] [PMCID]
122. Areia A, Vale-Pereira S, Alves V, Rodrigues-Santos P, Moura P, Mota-Pinto A. Membrane progesterone receptors in human regulatory T cells: A reality in pregnancy. BJOG 2015; 122: 1544-1550. [DOI:10.1111/1471-0528.13294] [PMID]
123. Wang S, Li M, Sun F, Chen C, Ye J, Li D, et al. Th17/Treg-cell balance in the peripheral blood of pregnant females with a history of recurrent spontaneous abortion receiving progesterone or cyclosporine A. Exp Ther Med 2021; 21: 37. [DOI:10.3892/etm.2020.9469] [PMID] [PMCID]
124. Ellery PM, Cindrova-Davies T, Jauniaux E, Ferguson-Smith AC, Burton GJ. Evidence for transcriptional activity in the syncytiotrophoblast of the human placenta. Placenta 2009; 30: 329-334. [DOI:10.1016/j.placenta.2009.01.002] [PMID] [PMCID]
125. Meakin C, Barrett ES, Aleksunes LM. Extravillous trophoblast migration and invasion: Impact of environmental chemicals and pharmaceuticals. Reprod Toxicol 2022; 107: 60-68. [DOI:10.1016/j.reprotox.2021.11.008] [PMID] [PMCID]
126. Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F. Control of human trophoblast function. Reprod Biol Endocrinol 2007; 5: 6. [DOI:10.1186/1477-7827-5-6] [PMID] [PMCID]
127. Lala PK, Nandi P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adh Migr 2016; 10: 111-125. [DOI:10.1080/19336918.2015.1106669] [PMID] [PMCID]
128. Merchant SJ, Narumiya H, Zhang Y, Guilbert LJ, Davidge ST. The effects of preeclampsia and oxygen environment on endothelial release of matrix metalloproteinase-2. Hypertens Pregnancy 2004; 23: 47-60. [DOI:10.1081/PRG-120028281] [PMID]
129. Myers JE, Merchant SJ, Macleod M, Mires GJ, Baker PN, Davidge ST. MMP-2 levels are elevated in the plasma of women who subsequently develop preeclampsia. Hypertens Pregnancy 2005; 24: 103-115. [DOI:10.1081/PRG-200059836] [PMID]
130. Lee JH, Kim TH, Oh SJ, Yoo JY, Akira S, Ku BJ, et al. Signal transducer and activator of transcription-3 (Stat3) plays a critical role in implantation via progesterone receptor in uterus. FASEB J 2013; 27: 2553-2563. [DOI:10.1096/fj.12-225664] [PMID] [PMCID]
131. Yie SM, Li LH, Li GM, Xiao R, Librach CL. Progesterone enhances HLA-G gene expression in JEG-3 choriocarcinoma cells and human cytotrophoblasts in vitro. Hum Reprod 2006; 21: 46-51. [DOI:10.1093/humrep/dei305] [PMID]
132. Helige C, Ahammer H, Hammer A, Huppertz B, Frank HG, Dohr G. Trophoblastic invasion in vitro and in vivo: Similarities and differences. Hum Reprod 2008; 23: 2282-2291. [DOI:10.1093/humrep/den198] [PMID]
133. Rizzo R, Melchiorri L, Stignani M, Baricordi OR. HLA-G expression is a fundamental prerequisite to pregnancy. Hum Immunol 2007; 68: 244-250. [DOI:10.1016/j.humimm.2006.10.012] [PMID]
134. Le Bouteiller P, Pizzato N, Barakonyi A, Solier C. HLA-G, pre-eclampsia, immunity and vascular events. J Reprod Immunol 2003; 59: 219-234. [DOI:10.1016/S0165-0378(03)00049-4] [PMID]
135. Guo Y, Lee CL, So KH, Gao J, Yeung WS, Yao Y, et al. Soluble human leukocyte antigen-g5 activates extracellular signal-regulated protein kinase signaling and stimulates trophoblast invasion. PloS One 2013; 8: e76023. [DOI:10.1371/journal.pone.0076023] [PMID] [PMCID]
136. Bai SX, Wang YL, Qin L, Xiao ZJ, Herva R, Piao YS. Dynamic expression of matrix metalloproteinases (MMP-2, -9 and -14) and the tissue inhibitors of MMPs (TIMP-1, -2 and -3) at the implantation site during tubal pregnancy. Reproduction 2005; 129: 103-113. [DOI:10.1530/rep.1.00283] [PMID]
137. Lawless L, Qin Y, Xie L, Zhang K. Trophoblast differentiation: Mechanisms and implications for pregnancy complications. Nutrients 2023; 15: 3564. [DOI:10.3390/nu15163564] [PMID] [PMCID]
138. Ghorbani Z, Shakiba M, Rezavand N, Rahimi Z, Vaisi-Raygani A, Shakiba E. Gene variants and haplotypes of vitamin D biosynthesis, transport, and function in preeclampsia. Hypertens Pregnancy 2021; 40: 1-8. [DOI:10.1080/10641955.2020.1849274] [PMID]
139. Qianmei Y, Zehong S, Guang W, Hui L, Lian G. Recent advances in the role of Th17/Treg cells in tumor immunity and tumor therapy. Immunol Res 2021; 69: 398-414. [DOI:10.1007/s12026-021-09211-6] [PMID]
140. Burton GJ, Fowden AL. The placenta: A multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci 2015; 370: 20140066. [DOI:10.1098/rstb.2014.0066] [PMID] [PMCID]
141. Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol 2018; 9: 1091. [DOI:10.3389/fphys.2018.01091] [PMID] [PMCID]
142. Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF, et al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol 2006; 80: 572-580. [DOI:10.1189/jlb.0406250] [PMID]
143. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2003; 101: 2620-2627. [DOI:10.1182/blood-2002-05-1461] [PMID]
144. Pongcharoen S, Somran J, Sritippayawan S, Niumsup P, Chanchan P, Butkhamchot P, et al. Interleukin-17 expression in the human placenta. Placenta 2007; 28: 59-63. [DOI:10.1016/j.placenta.2006.01.016] [PMID]
145. Wu X, Yang T, Liu X, Guo JN, Xie T, Ding Y, et al. IL-17 promotes tumor angiogenesis through Stat3 pathway mediated upregulation of VEGF in gastric cancer. Tumour Biol 2016; 37: 5493-5501. [DOI:10.1007/s13277-015-4372-4] [PMID]
146. Adair TH, Montani JP. Angiogenesis. San Rafael CA: Morgan & Claypool Life Sciences; 2010.
147. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 2007; 130: 691-703. [DOI:10.1016/j.cell.2007.06.054] [PMID] [PMCID]
148. Zachary I. VEGF signalling: Integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 2003; 31: 1171-1177. [DOI:10.1042/bst0311171] [PMID]
149. Steinborn A, Haensch GM, Mahnke K, Schmitt E, Toermer A, Meuer S, et al. Distinct subsets of regulatory T cells during pregnancy: Is the imbalance of these subsets involved in the pathogenesis of preeclampsia? Clin Immunol 2008; 129: 401-412. [DOI:10.1016/j.clim.2008.07.032] [PMID]
150. Sasaki Y, Darmochwal-Kolarz D, Suzuki D, Sakai M, Ito M, Shima T, et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin Exp Immunol 2007; 149: 139-145. [DOI:10.1111/j.1365-2249.2007.03397.x] [PMID] [PMCID]
151. Berg CJ, Harper MA, Atkinson SM, Bell EA, Brown HL, Hage ML, et al. Preventability of pregnancy-related deaths: Results of a state-wide review. Obstet Gynecol 2005; 106: 1228-1234. [DOI:10.1097/01.AOG.0000187894.71913.e8] [PMID]
152. Dhillion P, Wallace K, Herse F, Scott J, Wallukat G, Heath J, et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol 2012; 303: R353-358. [DOI:10.1152/ajpregu.00051.2012] [PMID] [PMCID]
153. Darmochwal-Kolarz D, Michalak M, Kolarz B, Przegalinska-Kalamucka M, Bojarska-Junak A, Sliwa D, et al. The role of interleukin-17, interleukin-23, and transforming growth factor-β in pregnancy complicated by placental insufficiency. BioMed Res Int 2017; 2017: 6904325. [DOI:10.1155/2017/6904325] [PMID] [PMCID]
154. Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol 2012; 93: 75-81. [DOI:10.1016/j.jri.2012.01.006] [PMID]
155. Luo S, Yin HN, Li SW. [Effect of TGF-beta1 on embryo implantation and development in mice in vitro]. Sichuan Da Xue Xue Bao Yi Xue Ban 2010; 41: 265-268. (in Chinese)
156. Muyayalo KP, Li Z-H, Mor G, Liao A-H. Modulatory effect of intravenous immunoglobulin on Th17/Treg cell balance in women with unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2018; 80: e13018. [DOI:10.1111/aji.13018] [PMID]
157. Sha J, Liu F, Zhai J, Liu X, Zhang Q, Zhang B. Alteration of Th17 and Foxp3+ regulatory T cells in patients with unexplained recurrent spontaneous abortion before and after the therapy of hCG combined with immunoglobulin. Exp Ther Med 2017; 14: 1114-1118. [DOI:10.3892/etm.2017.4574] [PMID] [PMCID]
158. Wu L, Luo L-H, Zhang Y-X, Li Q, Xu B, Zhou G-X, et al. Alteration of Th17 and Treg cells in patients with unexplained recurrent spontaneous abortion before and after lymphocyte immunization therapy. Reprod Biol Endocrinol 2014; 12: 74. [DOI:10.1186/1477-7827-12-74] [PMID] [PMCID]
159. Sadeghpour S, Ghasemnejad Berenji M, Nazarian H, Ghasemnejad T, Nematollahi MH, Abroon S, et al. Effects of treatment with hydroxychloroquine on the modulation of Th17/Treg ratio and pregnancy outcomes in women with recurrent implantation failure: Clinical trial. Immunopharmacol Immunotoxicol 2020; 42: 632-642. [DOI:10.1080/08923973.2020.1835951] [PMID]
160. Liu YS, Wu L, Tong XH, Wu LM, He GP, Zhou GX, et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2011; 65: 503-511. [DOI:10.1111/j.1600-0897.2010.00921.x] [PMID]
161. Nakashima A, Ito M, Shima T, Bac ND, Hidaka T, Saito S. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. Am J Reprod Immunol 2010; 64: 4-11. [DOI:10.1111/j.1600-0897.2010.00812.x] [PMID]
162. Qian J, Zhang N, Lin J, Wang C, Pan X, Chen L, et al. Distinct pattern of Th17/Treg cells in pregnant women with a history of unexplained recurrent spontaneous abortion. Biosci Trends 2018; 12: 157-167. [DOI:10.5582/bst.2018.01012] [PMID]
163. Lee SK, Kim JY, Hur SE, Kim CJ, Na BJ, Lee M, et al. An imbalance in interleukin-17-producing T and Foxp3⁺ regulatory T cells in women with idiopathic recurrent pregnancy loss. Hum Reprod 2011; 26: 2964-2971. [DOI:10.1093/humrep/der301] [PMID]
164. Roomandeh N, Saremi A, Arasteh J, Pak F, Mirmohammadkhani M, Kokhaei P, et al. Comparing serum levels of Th17 and Treg cytokines in women with unexplained recurrent spontaneous abortion and fertile women. Iran J Immunol 2018; 15: 59-67.
165. Ahmadi M, Abdolmohamadi-Vahid S, Ghaebi M, Dolati S, Abbaspour-Aghdam S, Danaii S, et al. Sirolimus as a new drug to treat RIF patients with elevated Th17/Treg ratio: A double-blind, phase II randomized clinical trial. Int Immunopharmacol 2019; 74: 105730. [DOI:10.1016/j.intimp.2019.105730] [PMID]
166. Ding L, Li X, Sun H, Su J, Lin N, Péault B, et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus. Biomaterials 2014; 35: 4888-4900. [DOI:10.1016/j.biomaterials.2014.02.046] [PMID]
167. Li W, Geng L, Liu X, Gui W, Qi H. Recombinant adiponectin alleviates abortion in mice by regulating Th17/Treg imbalance via p38MAPK-STAT5 pathway. Biol Reprod 2019; 100: 1008-1017. [DOI:10.1093/biolre/ioy251] [PMID]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به International Journal of Reproductive BioMedicine می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb