دوره 23، شماره 9 - ( 7-1404 )                   جلد 23 شماره 9 صفحات 722-713 | برگشت به فهرست نسخه ها

Ethics code: IR.ARAKMU.REC.1400.099


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Matin Manesh Z, Zeinali H, Ghanbari F, Mafi A, Goudarzi M, Ghoddoosi M, et al . Protective effect of chrysin on di (2-ethylhexyl) phthalate-induced toxicity in mice testis: An experimental study. IJRM 2025; 23 (9) :713-722
URL: http://ijrm.ir/article-1-3594-fa.html
بررسی اثر محافظتی کریسین بر سمیت ایجاد شده بوسیله دی (2-اتیل هگزیل) فتالات بر بیضه موش سوری: یک مطالعه تجربی. International Journal of Reproductive BioMedicine. 1404; 23 (9) :713-722

URL: http://ijrm.ir/article-1-3594-fa.html


چکیده:   (70 مشاهده)
مقدمه: دی (2-اتیل هگزیل) فتالات (DEHP) یکی از آلودگی­های محیطی است که در اجسام پلاستیکی استفاده شده و باعث آسیب به سیستم تولید­مثلی  می­شود. کریسین (CHr) یک فلاونوئید مؤثر در بره موم عسل است که دارای فعالیت­های آنتی­اکسیدانی می­باشد.
هدف: مطالعه حاضر با هدف بررسی اثرات احتمالی کریسین بر سمیت ناشی از DEHPدر بیضه موش‌های سوری نر انجام شد.
مواد و روش­ ها: در این مطالعه تجربی، 50 موش نرNMRI  (4-6 هفته، 30-20 گرم) به طور تصادفی به 5 گروه تقسیم شدند (10 سر/ هر گروه). گروه یک و دو نرمال سالین و روغن دریافت کردند. گروه سه DEHP، چهارمین گروه DEHP و کریسین دیافت کردند. در گروه پنج موش­های دست نخورده تحت درمان با کریسین قرار داشتند. وزن بیضه­ها اندازه­گیری شد. سطح سرمی تستوسترون، هورمون لوتئینه­کننده و هورمون محرک فولیکول سنجیده شد. ویژگی‌های اسپرمی و تغییرات بافت‌شناسی بیضه‌ مورد بررسی قرار گرفت.
نتایج: وزن بیضه‌ها در گروه دریافت­کننده DEHP کاهش یافت. همچنین DEHP تعداد اسپرم­ها را کاهش داد اما تجویز کریسین باعث بهبود آنها شد. کریسین تغییرات هورمونی ناشی از DEHP بویژه تستوسترون را بهبود بخشید (01/0 > p). ارزیابی مورفولوژیکی بافت بیضه در موش‌های دریافت­کننده DEHP، نشان‌دهنده سلول‌های زایای دژنره شده با سیتوپلاسم واکوئل دار، به همراه فضاهای بین سلولی وسیع بین لایه‌های ژرمینال و از بین رفتن اسپرماتوزوآ در مرکز لومن‌ها بود که با دریافت کریسین بهبود یافتند.
نتیجه­ گیری: بر اساس آنالیزهای بیوشیمیایی و هیستوپاتولوژیک ما، DEHP منجر به آسیب شدید بیضه­ها شد. نتایج تحقیق ما نشان می­دهد که کریسین بعنوان یک پاک­کننده رادیکال آزاد با کاهش آسیب بافتی ناشی از DEHP، می­تواند در بهبود اثرات سمیDEHP  بر سیستم تولید­مثلی مفید بوده و استفاده از آن می­تواند در جلوگیری از اثراتDEHP  مفید باشد.
نوع مطالعه: Original Article |

فهرست منابع
1. Jenkins R, Farnbach K, Iragorri S. Elimination of intravenous di-2-ethylhexyl phthalate exposure abrogates most neonatal hypertension in premature infants with bronchopulmonary dysplasia. Toxics 2021; 9: 75. [DOI:10.3390/toxics9040075] [PMID] [PMCID]
2. Chiang C, Mahalingam S, Flaws JA. Environmental contaminants affecting fertility and somatic health. Semin Reprod Med 2017; 35: 241-249. [DOI:10.1055/s-0037-1603569] [PMID] [PMCID]
3. Lin Y, Xu W, Yang L, Chen Z, Zhai J, Zhu Q, et al. Mechanism of testicular injury induced by Di-ethylhexyl phthalate and its protective agents. Chem Biol Interact 2023; 381: 110575. [DOI:10.1016/j.cbi.2023.110575] [PMID]
4. Khasin LG, Della Rosa J, Petersen N, Moeller J, Kriegsfeld LJ, Lishko PV. The impact of di-2-ethylhexyl phthalate on sperm fertility. Front Cell Dev Biol 2020; 8: 426. [DOI:10.3389/fcell.2020.00426] [PMID] [PMCID]
5. Hosseinzadeh A, Mehrzadi S, Siahpoosh A, Basir Z, Bahrami N, Goudarzi M. Gallic acid ameliorates di-(2-ethylhexyl) phthalate-induced testicular injury in adult mice. Hum Exp Toxicol 2022; 41: 9603271221078867. [DOI:10.1177/09603271221078867] [PMID]
6. Oudir M, Chader H, Bouzid B, Bendisari K, Latreche B, Boudalia S, et al. Male rat exposure to low dose of di(2-ethylhexyl) phthalate during pre-pubertal, pubertal and post-pubertal periods: Impact on sperm count, gonad histology and testosterone secretion. Reprod Toxicol 2018; 75: 33-39. [DOI:10.1016/j.reprotox.2017.11.004] [PMID]
7. Sadeghi A, Ghahari L, Yousefpour M. Vitamin E supplementation reduces oxidative stress in the male wistar rats' brain against polyvinyl chloride products. Ann Mil Health Sci Res 2019; 17: e92768. [DOI:10.5812/amh.92768]
8. Bahrami N, Mehrzadi S, Goudarzi M, Mansouri E, Fatemi I. Lycopene abrogates di-(2-ethylhexyl) phthalate induced testicular injury by modulating oxidative, endocrine and inflammatory changes in mice. Life Sci 2018; 207: 265-271. [DOI:10.1016/j.lfs.2018.06.009] [PMID]
9. Hu Q, Liu Z, Guo Y, Lu S, Du H, Cao Y. Antioxidant capacity of flavonoids from Folium Artemisiae argyi and the molecular mechanism in Caenorhabditis elegans. J Ethnopharmacol 2021; 279: 114398. [DOI:10.1016/j.jep.2021.114398] [PMID]
10. Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018; 145: 187-196. [DOI:10.1016/j.phytochem.2017.09.016] [PMID]
11. Yosefi S, Madanchi H, Pakdel A, Kokhaei P, Hemati M, Sarmadi N, et al. Combinatorial effects of chrysin with doxorubicin, 5-fluorouracil, and cyclophosphamide on triple-negative breast cancer cell line. Iran J Pharm Res 2025; 24: e157446. [DOI:10.5812/ijpr-157446] [PMID] [PMCID]
12. Del Fabbro L, Bortolotto VC, Ferreira LM, Sari MHM, Furian AF. Chrysin's anti-inflammatory action in the central nervous system: A scoping review and an evidence-gap mapping of its mechanisms. Eur J Pharmacol 2025; 997: 177602. [DOI:10.1016/j.ejphar.2025.177602] [PMID]
13. Sabry HA, Zahra MM, Haredy ShA, Amer AS. Neuroprotective impacts of chrysin against clonazepam induced cognitive deficits in male rats. J Appl Pharm Sci 2023; 13: 174-185. [DOI:10.7324/JAPS.2023.13885]
14. Vakili A, Momenabadi S, Bandegi AR, Vafaei AA, Vakili A. Chrysin and gallic acid protect the hippocampal neurons and mitigate blood-brain barrier disruption in a mouse model of global cerebral ischemia. Jundishapur J Nat Pharm Prod 2025; 20: e159908. [DOI:10.5812/jjnpp-159908]
15. Shang J, Jiao J, Yan M, Wang J, Li Q, Shabuerjiang L, et al. Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomed Pharmacother 2023; 161: 114534. [DOI:10.1016/j.biopha.2023.114534] [PMID]
16. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Shahbaz M, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci 2019; 235: 116797. [DOI:10.1016/j.lfs.2019.116797] [PMID]
17. Aksu EM, Ozkaraca F, Kandemir A, Omur E, Eldutar S, Comaklı S. Mitigation of paracetamol-induced reproductive damage by chrysin in male rats via reducing oxidative stress. Andrologia 2016; 48: 1145-1154. [DOI:10.1111/and.12553] [PMID]
18. Altawash ASA, Shahneh H, Ansari M. Chrysin-induced sperm parameters and fatty acid profile changes improve reproductive performance of roosters. Theriogenology 2017; 104: 72-79. [DOI:10.1016/j.theriogenology.2017.07.022] [PMID]
19. Shoieb SMA, Esmat AE, Abdel-Naim AB. Chrysin attenuates testosterone-induced benign prostate hyperplasia in rats. Food Chem Toxic 2018; 111: 650-659. [DOI:10.1016/j.fct.2017.12.017] [PMID]
20. Zeinali M, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother 2017; 92: 998-1009. [DOI:10.1016/j.biopha.2017.06.003] [PMID]
21. Khani S, Abdollahi M, Asadi Z, Nazeri M, Nasiri MA, Yusefi H, et al. Hypoglycemic, hepatoprotective, and hypolipidemic effects of hydroalcoholic extract of Eryngium billardieri root on nicotinamide/streptozotocin-induced type II diabetic rats. Res Pharm Sci 2021; 16: 193-202. [DOI:10.4103/1735-5362.310526] [PMID] [PMCID]
22. Alboghobeish S, Mahdavinia M, Zeidooni L, Samimi A, Oroojan AA, Alizadeh S, et al. Efficiency of naringin against reproductive toxicity and testicular damages induced by bisphenol A in rats. Iran J Basic Med Sci 2019; 22: 315-323.
23. Heidari H, Abdollahi M, Khani S, Nojavan F, Khani S. Effect of Alpinia officinarum extract on reproductive damages in streptozotocin induced diabetic male rats. J Diabetes Metab Disord 2021; 20: 77-85. [DOI:10.1007/s40200-020-00711-0] [PMID] [PMCID]
24. Goudarzi M, Kalantar M, Kalantar H. The hepatoprotective effect of gallic acid on mercuric chloride-induced liver damage in rats. Jundishapur J Nat Pharm Prod 2018; 12: e12345. [DOI:10.5812/jjnpp.12345]
25. Goudarzi M, Haghi Karamallah M, Malayeri A, Kalantar M, Mansouri E, Kalantar H. Protective effect of alpha-lipoic acid on di-(2-ethylhexyl) phthalate-induced testicular toxicity in mice. Environ Sci Pollut Res Int 2020; 27: 13670-13678. [DOI:10.1007/s11356-020-07817-1] [PMID]
26. Mesquita I, Lorigo M, Cairrao E. Update about the disrupting-effects of phthalates on the human reproductive system. Mol Reprod Dev 2021; 88: 650-672. [DOI:10.1002/mrd.23541] [PMID]
27. Han L, Wang J, Zhao T, Wu Y, Wei Y, Chen J, et al. Stereological analysis and transcriptome profiling of testicular injury induced by di-(2-ethylhexyl) phthalate in prepubertal rats. Ecotoxicol Environ Saf 2021; 220: 112326. [DOI:10.1016/j.ecoenv.2021.112326] [PMID]
28. Wang Y, Ni C, Li X, Lin Z, Zhu Q, Li L, et al. Phthalate-induced fetal leydig cell dysfunction mediates male reproductive tract anomalies. Front Pharmacol 2019; 10: 1309. [DOI:10.3389/fphar.2019.01309] [PMID] [PMCID]
29. Abd El-Fattah AA, Fahim AT, Sadik NAH, Ali BM. Resveratrol and curcumin ameliorate di-(2-ethylhexyl) phthalate induced testicular injury in rats. Gen Comp Endocrinol 2016; 225: 45-54. [DOI:10.1016/j.ygcen.2015.09.006] [PMID]
30. Hong Y, Zhou Y, Shen L, Wei Y, Long C, Fu Y, et al. Exposure to DEHP induces testis toxicity and injury through the ROS/mTOR/NLRP3 signaling pathway in immature rats. Ecotoxicol Environ Saf 2021; 227: 112889. [DOI:10.1016/j.ecoenv.2021.112889] [PMID]
31. Dutta S, Sengupta P, Slama P, Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int J Mol Sci 2021; 22: 10043. [DOI:10.3390/ijms221810043] [PMID] [PMCID]
32. Yadav P, Chand Mali P. Testicular inflammation in male reproductive system. Explor Immunol 2024; 4: 446-464. [DOI:10.37349/ei.2024.00151]
33. Yu Z, Wang F, Han J, Lu R, Li Q, Cai L, et al. Opposite effects of high- and low-dose di-(2-ethylhexyl) phthalate (DEHP) exposure on puberty onset, oestrous cycle regularity and hypothalamic kisspeptin expression in female rats. Reprod Fertil Dev 2020; 32: 610-618. [DOI:10.1071/RD19024] [PMID]
34. Martínez-Ibarra A, Cerbón M, Martínez-Razo LD, Morales-Pacheco M, Torre-Villalvazo I, Kawa S, et al. Impact of DEHP exposure on female reproductive health: Insights into uterine effects. Environ Toxicol Pharmacol 2024; 107: 104391. [DOI:10.1016/j.etap.2024.104391] [PMID]
35. Bahrami N, Goudarzi M, Hosseinzadeh A, Sabbagh S, Reiter RJ, Mehrzadi S. Evaluating the protective effects of melatonin on di(2-ethylhexyl) phthalate-induced testicular injury in adult mice. Biomed Pharmacother 2018; 108: 515-523. [DOI:10.1016/j.biopha.2018.09.044] [PMID]
36. Abbas MA, Alqaisi KM, Disi A, Hameed NA. Chrysin increased progesterone and LH levels, estrous phase duration and altered uterine histology without affecting aromatase expression in rat ovary. J Func Foods 2022; 89: 104964. [DOI:10.1016/j.jff.2022.104964]
37. Belhan S, Yıldırım S, Karasu A, Kömüroğlu AU, Özdek U. Investigation of the protective role of chrysin within the framework of oxidative and inflammatory markers in experimental testicular ischaemia/reperfusion injury in rats. Andrologia 2020; 52: e13714. [DOI:10.1111/and.13714]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به International Journal of Reproductive BioMedicine می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb