Volume 11, Issue 8 (11-2013)                   IJRM 2013, 11(8): 605-0 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebadi Manas G, Hasanzadeh S, Najafi G, Parivar K, Yaghmaei P. The effects of pyridaben pesticide on the DNA integrity of sperms and early in vitro embryonic development in mice. IJRM 2013; 11 (8) :605-0
URL: http://ijrm.ir/article-1-456-en.html
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran , ebadimanas@gmail.com
2- Department of Basic Veterinary Sciences, Histology and Embryology Sections, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
3- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (2639 Views)
Background: Pyridaben, a pyridazinone derivative, is a new acaricide and insecticide for control of mites and some insects such as white flies, aphids and thrips.
Objective: This study was designed to elucidate how pyridaben can affect the sperms' morphological parameters, its DNA integrity, and to estimate the effect of various quantities of pyridaben on in vitro fertilization rate.
Materials and Methods: In this study, 80 adult male Balb/C strain mice were used. Animals were divided into control and two test groups. Control group received distilled water. The test group was divided into two subgroups, viz, high dose (212 mg/kg/day) and low dose (53 mg/kg/day) and they received the pyridaben, orally for duration of 45 days. The spermatozoa were obtained from caudae epididymides on day 45 in all groups. Sperm viability, protamin compression (nuclear maturity), DNA double-strand breaks, and in vitro fertilizing (IVF) ability were examined.
Results: The pyridaben treatment provoked a significant decrease in sperm population and viability in epididymides. The data obtained from this experiment revealed that, the pyridaben brings about negative impact on the sperm maturation and DNA integrity in a time-dependent manner, which consequently caused a significant (p<0.05) reduction in IVF capability. Embryo developing arrest was significantly (p<0.05) higher in treated than the control group.
Conclusion: Theses results confirmed that, the pyridaben is able to induce DNA damage and chromatin abnormalities in spermatozoa which were evident by low IVF rate.
Full-Text [PDF 363 kb]   (606 Downloads) |   |   Full-Text (HTML)  (410 Views)  
Type of Study: Original Article |

References
1. Suzuki N, Sofikitis N. Protective effects of antioxidants on testicular functions of varicocelized rats. Yonago Acta medica 1999; 42: 87-94.
2. Schlegel PN, chacg TS, Marshall FF. Antibiotics: potential hazards to male fertility. Fertil Steril 1991; 55: 235-242. [DOI:10.1016/S0015-0282(16)54108-9]
3. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003; 9: 331-345. [DOI:10.1093/humupd/dmg027]
4. Hirata K, Kawamura Y, Kuno M, Igarashi H. Development of a new acaricide pyridaben. J Pest Sci 1995; 20: 177-179. [DOI:10.1584/jpestics.20.177]
5. Stumpf N, Nauen R. Cross-resistance, Inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae. J Econ Entomol 2001; 94: 1577-1583. [DOI:10.1603/0022-0493-94.6.1577]
6. Hajime I, Satoru S. Summary of Toxicity Studies with pyridaben: Regulatory agricultural division. Nissan chemical industries Ltd.; 1994.
7. Gomez C, Bandez MJ, Navarro A. Pesticides and impairment of mitochondrial function in relation with the parkinsonian syndrome. Front Biosci 2007; 12: 1079-1093. [DOI:10.2741/2128]
8. Parihar MS, Nazarewicz RR, Kincaid E, Bringold U, Ghafourifar P. Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochem Biophys Res Commun 2008; 366: 23-28. [DOI:10.1016/j.bbrc.2007.11.056]
9. Parihar MS, Parihar A, Villamena FA, Vaccaro PS, Ghafourifar P. Inactivation of mitochondrial respiratory chain complex I lead mitochondrial nitric oxide synthase to become pro-oxidative. Biochem Biophys Res Commun 2008; 367: 761-767. [DOI:10.1016/j.bbrc.2008.01.015]
10. Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, et al. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. J Neurochem 2007; 100: 1469-1479. [DOI:10.1111/j.1471-4159.2006.04333.x]
11. Okun JG, Lümmen P, Brandt U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH: ubiquinone oxidoreductase). J Biol Chem 1999; 274: 2625-2630. [DOI:10.1074/jbc.274.5.2625]
12. Schuler F, Casida JE. The insecticide target in the PSST subunit of complex I. Pest Manag Sci 2001; 57: 932-940. [DOI:10.1002/ps.364]
13. Sherer TB, Betarbet R, Greenamyre JT. Environment, mitochondria, and Parkinson's disease. Neuroscientist 2002; 8: 192-197.
14. Barrientos A, Moraes CT. Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem 1999; 274: 16188-16197. [DOI:10.1074/jbc.274.23.16188]
15. Kushnareva Y, Murphy AN, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD (P)+ oxidation-reduction state. Biochem J 2002; 368: 545-553. [DOI:10.1042/bj20021121]
16. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003; 278: 8516-8525. [DOI:10.1074/jbc.M210432200]
17. Sipos I, Tretter L, Adam Vizi V. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential. Neurochm Res 2003; 28: 1575-1581. [DOI:10.1023/A:1025634728227]
18. Schuler F, Yano T, Di Bernardo S, Yagi T, Yankovskaya V, Singer TP, et al. NADH-auinone oxidoreductase:PSST subunit couples electron transfer from iron- sulfur cluster N2 to quinine. Proc Natl Acad Sci USA 1999; 96: 4149-4153. [DOI:10.1073/pnas.96.7.4149]
19. Bloom SE, Lemley AT, Muscarella DE. Potentiation of apoptosis by heat stress plus pesticide exposure in stress resistant human B-lymphoma cells and its attenuation through interaction with follicular dendritic cells: role for c-Jun N-terminal kinase signaling. Toxicol Sci 2006; 89: 214-223. [DOI:10.1093/toxsci/kfj021]
20. Garacia-Ruiza C, Colell A, Mari Morales A, Fernandez-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species . J Biol Chem 1997; 272: 11369-11377. [DOI:10.1074/jbc.272.17.11369]
21. ST-Pierre j, Buckingham j A, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002; 277: 44784-44790. [DOI:10.1074/jbc.M207217200]
22. Chen, Q, Vazques EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 2003; 278: 36027-36031. [DOI:10.1074/jbc.M304854200]
23. Nianbai Fang and John E Casida. Anticancer action of cube insecticide. Proc Natl Sci USA 1998; 95: 3380-3384. [DOI:10.1073/pnas.95.7.3380]
24. Toyoda Y, Chang MC. Fertilization of rat eggs in vitro by epididymal spermatozoa and the development of eggs following transfer. J Reprod Fertil 1974; 36: 9-22. [DOI:10.1530/jrf.0.0360009]
25. Nasr-Esfahani MH, Razavi S, Mardani M. Relation between different human sperm nuclear maturity tests and in vitro fertilization. J Assist Reprod Genet 2001; 18: 219-225. [DOI:10.1023/A:1009412130417]
26. Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-Hafez MA, Thomas AJ, et al. Relationship between ROS roduction, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod 2004; 19: 129-138. [DOI:10.1093/humrep/deh024]
27. Mathur N, Pandey G, Jain A GC. Review of the male reproductive toxicity. J Herb Med Toxic 2010; 4: 1-8.
28. Najafi GR, Razi M, Hoshyar A, Shahmohamadloo S, Feyzi S. The effect of chronic exposure with imidaclopride insecticide on fertility in mature male rats. Int J Fertil Steril 2010; 9: 9-16.
29. Gu QY, Chen WB, Wang LJ, Shen J, Zhang JP. Effects of sublethal dosage of abamectin and pyridaben on life table of laboratory populations of Tetranychus turkestani (Acari: Tetranychidae). Acta Entomologica Sinica 2010; 53: 876-883.
30. Sakkas D, Mariethoz E, Manicardi G. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 1999; 4: 31-37. [DOI:10.1530/ror.0.0040031]
31. Duru NK, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril 2000; 74: 1200-1207. [DOI:10.1016/S0015-0282(00)01591-0]
32. Bianchi P, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of DNA protamination on fluorochrome staining and in situ nicktranslation of murine and human mature spermatozoa. Biol Reprod 1993; 49: 1038-1043. [DOI:10.1095/biolreprod49.5.1083]
33. Fujishiro JA. Effect of varicocele on fertility potential: comparison between impregnating and non-impregnating groups. Arch Androl 1995; 35: 143-148. [DOI:10.3109/01485019508987865]
34. Kessopoulou E, Tomlinson MJ, Barratt CL, Bolton AE, Cooke ID. Origin of reactive oxygen species in human semen spermatozoa or leukocytes. J Reprod Fertil 1992; 94: 463-470. [DOI:10.1530/jrf.0.0940463]
35. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 1999; 14: 1039-1049. [DOI:10.1093/humrep/14.4.1039]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb