Volume 14, Issue 1 (1-2016)                   IJRM 2016, 14(1): 15-22 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kargar- Dastjerdy P, Tavalaee M, Salehi M, Falahati M, Izadi T, Nasr Esfahani M H. Altered expression of KLC3 may affect semen parameters. IJRM 2016; 14 (1) :15-22
URL: http://ijrm.ir/article-1-691-en.html
1- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
2- Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
3- Department of Nanotechnology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
4- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
5- Isfahan Fertility and Infertility Center, Isfahan, Iran
Abstract:   (3470 Views)
Background: KLC3 protein as a member of the kinesin light-chain protein family plays an important role in spermatogenesis, during formation of mitochondrial sheath in the mid piece of the sperm tail.
Objective: This study for the first time aims to compare the expression of the KLC3 gene between fertile and infertile individuals.
Materials and Methods: Semen samples were collected from 19 fertile individuals who were selected from embryo-donor volunteers and 57 infertile individuals who had abnormal sperm parameters according to world health organization criteria. Sperm parameters using computer assisted sperm analysis and the quantitative KLC3-gene expression using the real-time PCR method were measured.
Results: Our results revealed a significant correlations between sperm concentration with relative expression of KLC3 only in infertile groups (r=0.45, p=0.00). A significant correlation was not found between KLC3 expression and sperm motility; however, the relative expression of KLC3 was significantly higher in asthenozoospermic compared to non-asthenozoospermic individuals.
Conclusion: Low expression of KLC3 may result in improper function of midpiece, which has important function in sperm motility. The results of this study show that aberrant expression of KLC3 might be associated with phenomena like oligozoospermia and asthenozoospermia. This article is extracted from student’s thesis.
Full-Text [PDF 697 kb]   (734 Downloads) |   |   Full-Text (HTML)  (396 Views)  
Type of Study: Original Article |

References
1. Clermont Y, Oko R, Hermo L. Immunocytochemical localization of proteins utilized in the formation of outer dense fibers and fibrous sheath in rat spermatids: an electron microscope study. Anat Rec 1990; 227: 447-457. [DOI:10.1002/ar.1092270408]
2. Fawcett D.W, Anderson W.A, Phillips D.M. Morphogenetic factors influencing: The shape of the sperm head. J Dev Biol 1971; 26: 220-251. [DOI:10.1016/0012-1606(71)90124-2]
3. Fawcett DW. The mammalian spermatozoon. Dev Biol 1975; 44: 394-436. [DOI:10.1016/0012-1606(75)90411-X]
4. Fitzgerald CJ, Oko RJ, Van Der Hoorn FA. Rat Spag5 associates in somatic cells with endoplasmic reticulum and microtubules but in spermatozoa with outer dense fibers. Mol Reprod Dev 2006; 73: 92-100. [DOI:10.1002/mrd.20388]
5. Iida H, Honda Y, Matsuyama T, Shibata Y, Inai T. Spetex‐1: A new component in the middle piece of flagellum in rodent spermatozoa. Mol Reprod Dev 2006; 73: 342-349. [DOI:10.1002/mrd.20419]
6. Murayama E, Yamamoto E, Kaneko T, Shibata Y, Inai T, Iida H. Tektin5, a new Tektin family member, is a component of the middle piece of flagella in rat spermatozoa. Mol Reprod Dev 2008; 75: 650-658. [DOI:10.1002/mrd.20804]
7. Hirokawa N, Nitta R, Okada Y. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat Rev Mol Cell Biol 2009; 10: 877-884. [DOI:10.1038/nrm2807]
8. Cyr JL, Pfister KK, Bloom GS, Slaughter CA, Brady ST. Molecular genetics of kinesin light chains: generation of isoforms by alternative splicing. Proc Natl Acad Sci USA 1991; 88: 10114-10118. [DOI:10.1073/pnas.88.22.10114]
9. Diefenbach RJ, Mackay JP, Armati PJ, Cunningham AL. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 1998; 37: 16663-16670. [DOI:10.1021/bi981163r]
10. Junco A, Bhullar B, Tarnasky HA, Van Der Hoorn FA. Kinesin light-chain KLC3 expression in testis is restricted to spermatids. Biol Reprod 2001; 64: 1320-1330. [DOI:10.1095/biolreprod64.5.1320]
11. Bhullar B, Zhang Y, Junco A, Oko R, Van Der Hoorn FA. Association of kinesin light chain with outer dense fibers in a microtubule-independent fashion. J Biol Chem 2003; 278: 16159-16168. [DOI:10.1074/jbc.M213126200]
12. Zhang Y, Ou Y, Cheng M, Shojaei Saadi H, Thundathil JC, Van Der Hoorn FA. KLC3 is involved in sperm tail midpiece formation and sperm function. Dev Biol 2012; 366: 101-110. [DOI:10.1016/j.ydbio.2012.04.026]
13. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 2009; 15: 553-572. [DOI:10.1093/humupd/dmp016]
14. Martin M, Iyadurai SJ, Gassman A, Gindhart JG, Hays TS, Saxton WM. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol Biol Cell 1999; 10: 3717-3728. [DOI:10.1091/mbc.10.11.3717]
15. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 2004; 429: 154. [DOI:10.1038/429154a]
16. World Health Organization. WHO laboratory manual for the examination and processing of human semen. Geneva, Switzerland: WHO Press; 2010; 1-271.
17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2< sup>− ΔΔCT< /sup> method. Methods 2001; 25: 402-408. [DOI:10.1006/meth.2001.1262]
18. Vaerman J, Saussoy P, Ingargiola I. Evaluation of real-time PCR data. J Biol Regul Homeost Agents 2004; 18: 212-214.
19. Pessot CA, Brito M, Figueroa J, Concha II, Ya-ez A, Burzio LO. Presence of RNA in the sperm nucleus. Biochem Biophys Res Commun 1989; 158: 272-278. [DOI:10.1016/S0006-291X(89)80208-6]
20. Swain JL, Stewart TA, Leder P. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 1987; 50: 719-727. [DOI:10.1016/0092-8674(87)90330-8]
21. Cummins J. Cytoplasmic inheritance and its implications for animal biotechnology. Theriogenology 2001; 55: 1381-1399. [DOI:10.1016/S0093-691X(01)00489-7]
22. Ziyyat A, Lefèvre A. Differential gene expression in pre-implantation embryos from mouse oocytes injected with round spermatids or spermatozoa. Hum Reprod 2001; 16: 1449-1456. [DOI:10.1093/humrep/16.7.1449]
23. Lambard S, Galeraud‐Denis I, Bouraïma H, Bourguiba S, Chocat A, Carreau S. Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol Hum Reprod 2003; 9: 117-124. [DOI:10.1093/molehr/gag020]
24. Lambard S, Galeraud-Denis I, Martin G, Levy R, Chocat A, Carreau S. Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod 2004; 10: 535-541. [DOI:10.1093/molehr/gah064]
25. Naz R, Ahmad K, Kumar G. Presence and role of c-myc proto-oncogene product in mammalian sperm cell function. Biol Reprod 1991; 44: 842-850. [DOI:10.1095/biolreprod44.5.842]
26. Jung M, Ramankulov A, Roigas J, Johannsen M, Ringsdorf M, Kristiansen G, et al. In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR. BMC Mol Biol 2007; 8: 47. [DOI:10.1186/1471-2199-8-47]
27. Roy S, Siahpirani AF, Chasman D, Knaack S, Ay F, Stewart R, et al. A predictive modeling approach for cell line-specific long-range regulatory interactions. Nucleic Acids Res 2015; 43: 8694-8712 [DOI:10.1093/nar/gkv865]
28. Dong W-W, Huang H-L, Yang W, Liu J, Yu Y, Zhou S-L, et al. Testis-specific Fank1 gene in knockdown mice produces oligospermia via apoptosis. Asian J Androl 2014; 16: 124-130. [DOI:10.4103/1008-682X.122592]
29. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod 2005; 20: 1298-306. [DOI:10.1093/humrep/deh798]
30. Nakamura BN, Lawson G, Chan JY, Banuelos J, Cortés MM, Hoang YD, et al. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radic Biol Med 2010; 49: 1368-1379. [DOI:10.1016/j.freeradbiomed.2010.07.019]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb