Volume 15, Issue 6 (7-2017)                   IJRM 2017, 15(6): 323-330 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ali Mohamed M S. A new strategy and system for the ex vivo ovary perfusion and cryopreservation: An innovation. IJRM 2017; 15 (6) :323-330
URL: http://ijrm.ir/article-1-835-en.html
M.D. Graduate, University of Cologne, Germany , Mohammed.shehatta1@gmail.com
Abstract:   (3232 Views)
Children and young adults, who suffer from cancer, receive gonadotoxic therapy, which destroys their fertile abilities after survival. Ovarian cryopreservation and transplantation provide the promising solution to this problem, where the ovary can be removed before the gonadotoxic therapy and reimplanted after patient's survival, where the ovary is to be cryopreserved during the period of the therapy. However, cryopreservation of the whole ovary is still facing great obstacles, namely the ischemic reperfusion injury and the defective cryopreservation related to the defective ability to universally deliver the cryopreservation/warming solutions through the ovarian vascular bed. Meanwhile, the currently applied technique of ovarian tissue cryopreservation provides limited follicular recovery because many follicles are lost until the establishment of revascularization post-transplantation. To solve the problems, an innovative system has been developed to insure immediate and universal delivery of the cryopreservation/warming solutions to the graft, in addition to keeping the graft under continuous perfusion before and after cryopreservation, minimizing any chance for microthrombi formation or ischemia-reperfusion. This innovative system can be applied in the following surgical and clinical interventions: 1) Allogeneic ovarian transplantation; 2) Preservation of fertility after systemic chemotherapy or bone marrow transplantation in young females, where the ovaries could be removed before the therapy and exposed to the adequate cryopreservation provided by the system till re-implantation after the patient's survival; 3) The system is also suitable for the corresponding applications on the testicles.
Full-Text [PDF 202 kb]   (808 Downloads) |   |   Full-Text (HTML)  (508 Views)  
Type of Study: Original Article |

References
1. Silber Sh. Ovarian tissue cryopreservation and transplantation: scientific implications. J Assist Reprod Genet 2016; 33: 1595-1603. [DOI:10.1007/s10815-016-0814-1]
2. Johannes O, Nouri K, Stögbauer L, Fischer EM, Lipovac M, Promberger R, et al. Ovarian tissue cryopreservation for non-malignant indications. Arch Gynecol Obstet 2010; 281: 735-739. [DOI:10.1007/s00404-009-1224-8]
3. Rodriguez-Wallberg KA, Tanbo T, Tinkanen H, Thurin-Kjellberg A, Nedstrand E, Kitlinski ML, et al. Ovarian tissue cryopreservation and transplantation among alternatives for fertility preservation in the Nordic countries- compilation of 20 years of multicenter experience. Acta Obstet Gynecol Scand 2016; 95: 1015-1026. [DOI:10.1111/aogs.12934]
4. Tsang WH, Chow KL. Cryopreservation of mammalian embryos: Advancement of putting life on hold. Birth Defects Res C Embryo Today 2010; 90: 163-175. [DOI:10.1002/bdrc.20186]
5. Santos RR, Amorim C, Cecconi S, Fassbender M, Imhof M, Lornage J, et al. Cryopreservation of ovarian tissue: an emerging technology for female germline preservation of endangered species and breeds. Anim Reprod Sci 2010; 122: 151-163. [DOI:10.1016/j.anireprosci.2010.08.010]
6. Silber SJ. Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod 2012; 18: 59-67. [DOI:10.1093/molehr/gar082]
7. Candy CJ, Wood MJ, Whittingham DG. Follicular development in cryopreserved marmoset ovarian tissue after transplantation. Hum Reprod 1995; 10: 2334-2338. [DOI:10.1093/oxfordjournals.humrep.a136295]
8. Kardak A, Leibo SP, Devireddy R. Membrane transport properties of equine and macaque ovarian tissues frozen in mixtures of dimethylsulfoxide and ethylene glycol. J Biomech Eng 2007; 129: 688-694. [DOI:10.1115/1.2768107]
9. Li G, Thirumala S, Leibo SP, Devireddy RV. Subzero water transport characteristics and optimal rates of freezing rhesus monkey (Macaca mulatta) ovarian tissue. Mol Reprod Dev 2006; 73: 1600-1611. [DOI:10.1002/mrd.20541]
10. Schnorr J, Oehninger S, Toner J, Hsiu J, Lanzendorf S, Williams R, et al. Functional studies of subcutaneous ovarian transplants in non-human primates: steroidogenesis, endometrial development, ovulation, menstrual patterns and gamete morphology. Hum Reprod 2002; 17: 612-619. [DOI:10.1093/humrep/17.3.612]
11. Ting AY, Yeoman RR, Lawson MS, Zelinski MB. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum Reprod 2011; 26: 2461-2472. [DOI:10.1093/humrep/der196]
12. Von Schönfeldt V, Chandolia R, Kiesel L, Nieschlag E, Schlatt S, Sonntag B. Advanced follicle development in xenografted prepubertal ovarian tissue: the common marmoset as a nonhuman primate model for ovarian tissue transplantation. Fertil Steril 2011; 95: 1428-1434. [DOI:10.1016/j.fertnstert.2010.11.003]
13. Von Schönfeldt V, Chandolia R, Kiesel L, Nieschlag E, Schlatt S, Sonntag B. Assessment of follicular development in cryopreserved primate ovarian tissue by xenografting: prepubertal tissues are less sensitive to the choice of cryoprotectant. Reproduction 2011; 141: 481-490. [DOI:10.1530/REP-10-0454]
14. Yeoman RR, Wolf DP, Lee DM. Coculture of monkey ovarian tissue increases survival after vitrification and slow-rate freezing. Fertil Steril 2005; 83 (Suppl.): 1248-1254. [DOI:10.1016/j.fertnstert.2004.11.036]
15. Amorim CA, Jacobs S, Devireddy RV, Van Langendonckt A, Vanacker J, Jaeger J, et al. Successful vitrification and autografting of baboon (Papio anubis) ovarian tissue. Hum Reprod 2013; 28: 2146-2156. [DOI:10.1093/humrep/det103]
16. Hasegawa A, Mochida N, Ogasawara T, Koyama K. Pup birth from mouse oocytes in preantral follicles derived from vitrified and warmed ovariesfollowed by in vitro growth, in vitro maturation, and in vitro fertilization. Fertil Steril 2006; 86: 1182-1192. [DOI:10.1016/j.fertnstert.2005.12.082]
17. Hashimoto S, Suzuki N, Yamanaka M, Hosoi Y, Ishizuka B, Morimoto Y. Effects of vitrification solutions and equilibration times on the morphology of cynomolgus ovarian tissues. Reprod Biomed Online 2010; 21: 501-509. [DOI:10.1016/j.rbmo.2010.04.029]
18. Kagabu S, Umezu M. Transplantation of cryopreserved mouse, Chinese hamster, rabbit, Japanese monkey and rat ovaries into rat recipients. Exp Anim 2000; 49: 17-21. [DOI:10.1538/expanim.49.17]
19. Suzuki N, Hashimoto S, Igarashi S, Takae S, Yamanaka M, Yamochi T, et al. Assessment of long-term function of heterotopic transplants of vitrified ovarian tissue in cynomolgus 1 monkeys. Hum Reprod 2012; 27: 2420-2429. [DOI:10.1093/humrep/des178]
20. Ting AY, Yeoman RR, Campos JR, Lawson MS, Mullen SF, Fahy GM, et al. Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum Reprod 2013; 28: 1267-1279. [DOI:10.1093/humrep/det032]
21. Ting AY, Yeoman RR, Lawson MS, Zelinski MB. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum Reprod 2011; 26: 2461-2472. [DOI:10.1093/humrep/der196]
22. Ting AY, Yeoman RR, Lawson MS, Zelinski MB. Synthetic polymers improve vitrification outcomes of macaque ovarian tissue as assessed by histological integrity and the in vitro development of secondary follicles. Cryobiology 2012; 65: 1-11. [DOI:10.1016/j.cryobiol.2012.04.005]
23. Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. Fertil Steril 2005; 83: 1622-1628. [DOI:10.1016/j.fertnstert.2005.03.013]
24. Prest SJ, May FE, Westley BR. The estrogen-regulated protein, TFF-1, stimulates migration of human breast cancer cells. FASEB J 2002; 1: 592-594. [DOI:10.1096/fj.01-0498fje]
25. Seli E, Tangir J. Fertility preservation options for female patients with malignancies. Curr Opin Obstet Gynecol 2005; 17: 299-308. [DOI:10.1097/01.gco.0000169108.15623.34]
26. Fauser B. Follicle pool depletion: factors involved and implications. Fertil Steril 2000; 74: 629-630. [DOI:10.1016/S0015-0282(00)01530-2]
27. Oktem O, Oktay K. A novel ovarian xenografting model to characterize the impact of chemotherapy agent on human primordial follicle reserve. Cancer Res 2007; 67: 10159-10162. [DOI:10.1158/0008-5472.CAN-07-2042]
28. Practice Committee of American Society for Reproductive Medicine; Practice Committee of Society for Assisted Reproductive Technology. Ovarian tissue and oocyte cryopreservation. Fertil Steril 2008; 90: 241-246. [DOI:10.1016/j.fertnstert.2008.08.039]
29. Silber S, Gosden RG. Ovarian transplantation in a series of monozygotic twins discordant for ovarian failure. N Engl J Med 2007; 356: 1382-1384. [DOI:10.1056/NEJMc066574]
30. Silber S, Kagawa N, Kuwayama M, Gosden R. Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril 2010; 94: 2191-2196. [DOI:10.1016/j.fertnstert.2009.12.073]
31. Vutyavanich T, Piromlertamorn W, Nunta S. Rapid freezing versus slow programmable freezing of human spermatozoa. Fertil Steril 2010; 93: 1921-1928. [DOI:10.1016/j.fertnstert.2008.04.076]
32. Karlsson JO, Szurek EA, Higgins AZ, Lee SR, and Eroglu A. Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology 2014; 68: 18-28. [DOI:10.1016/j.cryobiol.2013.11.002]
33. Amorim CA, Dolmans MM, David A, Jaeger J, Vanacker J, Camboni A, et al. Vitrification and xenografting of human ovarian tissue. Fertil Steril 2012; 98: 1291-1298. [DOI:10.1016/j.fertnstert.2012.07.1109]
34. Kuleshova, L.L. and Lopata, A. Vitrification can be more favorable than slow cooling. Fertil Steril 2002; 78: 449-454. [DOI:10.1016/S0015-0282(02)03305-8]
35. Varisli O, Scott H, Agca C, and Agca Y. The effects of cooling rates and type of freezing extenders on cryosurvival of rat sperm. Cryobiology 2013; 67: 109-116. [DOI:10.1016/j.cryobiol.2013.05.009]
36. van Eyck AS, Jordan BF, Gallez B, Heilier JF, van Langendonckt A, Donnez J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril 2009; 92: 374-381. [DOI:10.1016/j.fertnstert.2008.05.012]
37. Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, et al. Vitrification versus controlled-rate freewing in cryopreservation of human ovarian tissue. Hum Reprod 2009; 24: 1670-1683. [DOI:10.1093/humrep/dep079]
38. Huang L, Mo Y, Wang W, Li Y, Zhang Q, Yang D. Cryopreservation of human ovarian tissue by solid-surface vitrification. Eur J Obstet Gynecol Reprod Biol 2008; 139: 193-198. [DOI:10.1016/j.ejogrb.2008.03.002]
39. Liu J, Van der Elst J, Van den Broecke R, et al. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod 2002; 17: 605-611. [DOI:10.1093/humrep/17.3.605]
40. Bedaiwy MA, El Nashar SA, Ali M El Saman, Johannes LH Evers, Samith Sandadi, Nina Desai, et al. Reproductive outcome after transplantation of ovarian tissue: a systematic review. Hum Reprod 2008; 23: 2709-2717. [DOI:10.1093/humrep/den301]
41. Bedaiwy MA, Falcone T. Whole ovary transplantation. Clin Obstet Gynecol 2010; 53: 797-803. [DOI:10.1097/GRF.0b013e3181f97c94]
42. Israely T, Nevo N, Harmelin A, et al. Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum Reprod 2006; 21: 1368-1379. [DOI:10.1093/humrep/del010]
43. Kim SS, Yang HW, Kang HG, Lee HH, Lee HC, Ko DS, et al. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril 2004; 82: 679-685. [DOI:10.1016/j.fertnstert.2004.05.022]
44. Sagsoz N, Kisa U, Apan A. Ischaemia-reperfusion injury of rat ovary and the effects of vitamin C, mannitol and verapamil. Hum Reprod 2002; 17: 2972-2976. [DOI:10.1093/humrep/17.11.2972]
45. Sapmaz E, Ayar A, Celik H, Sapmaz T, Kilic N and Yasar MA. Effects of melatonin and oxytetracycline in autologous intraperitoneal ovary transplantation in rats. Neuro Endocrinol Lett 2003; 24: 350-354.
46. Schnorr J, Oehninger S, Toner J, Hsiu J, Lanzendorf S, Williams R, et al. Functional studies of subcutaneous ovarian transplants in non-human primates: steroidogenesis, endometrial development, ovulation, menstrual patterns and gamete morphology. Hum Reprod 2002; 17: 612-619. [DOI:10.1093/humrep/17.3.612]
47. Imthurn B, Cox SL, Jenkin G, Trounson AO, Shaw JM. Gonadotrophin administration can benefit ovarian tissue grafted to the body wall: implications for human ovarian grafting. Mol Cell Endocrinol 2000; 163: 141-146. [DOI:10.1016/S0303-7207(00)00218-5]
48. Jeremias E, Bedaiwy MA, Gurunluoglu R, Biscotti CV, Siemionow M and Falcone T. Heterotopic autotransplantation of the ovary with microvascular anastomosis: a novel surgical technique. Fertil Steril 2002; 77: 1278-1282. [DOI:10.1016/S0015-0282(02)03110-2]
49. Jadoul P, Donnez J, Dolmans MM, Squifflet J, Lengele B and Martinez-Madrid B. Laparoscopic ovariectomy for whole human ovary cryopreservation: technical aspects. Fertil Steril 2007; 87: 971-975. [DOI:10.1016/j.fertnstert.2006.10.012]
50. Silber SJ, Grudzinskas G, Gosden RG. Successful pregnancy after microsurgical transplantation of an intact ovary. N Engl J Med 2008; 359: 2617-2618. [DOI:10.1056/NEJMc0804321]
51. Courbiere B, Caquant L, Mazoyer C, Franck M, Lornage J, Salle B. Difficulties improving ovarian functional recovery by microvascular transplantation and whole ovary vitrification. Fertil Steril 2009; 91: 2697-2706. [DOI:10.1016/j.fertnstert.2008.03.012]
52. Onions VJ, Webb R, McNeilly AS, Campbell BK. Ovarian endocrine profile and long-term vascular patency following heterotopic autotransplantation of cryopreserved whole ovine ovaries. Hum Reprod 2009; 24: 2845-2855. [DOI:10.1093/humrep/dep274]
53. Maffei S, Galeati G, Pennarossa G, Brevini TA, Gandolfi F. Extended ex vivo culture of fresh and cryopreserved whole sheep ovaries. Reprod Fertil Dev 2015; 28: 1893-1903. [DOI:10.1071/RD15101]
54. Mohamed SA Mohamed Translational insights on lung transplantation; learning from immunology. Iran J Immunol 2015; 12: 156-65.
55. Khazaie H, Rezaie L, Payam NR, Najafi F. Antidepressant-induced sexual dysfunction during treatment with fluoxetine, sertraline and trazodone; a randomized controlled trial. Gen Hosp Psychiatry 2015; 37: 40-45. [DOI:10.1016/j.genhosppsych.2014.10.010]
56. Khin NA, Kronstein PD, Yang P, Ishida E, Hung HJ, Mathis MV, et al. Regulatory and scientific issues in studies to evaluate sexual dysfunction in antidepressant drug trials. J Clin Psychiatry 2015; 76: 1060-1063. [DOI:10.4088/JCP.14cs09700]
57. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2013; 380: 2224-2260. [DOI:10.1016/S0140-6736(12)61766-8]
58. Van Thiel D, Gavaler JS, Cobb CF, Graham TO. Ethanol, a Leydig cell toxin: evidence obtained in vivo and in vitro. Pharmacol Biochem Behav 1983; 18: 317-323. [DOI:10.1016/0091-3057(83)90193-4]
59. Salonen I, Eriksson C. Penetration of ethanol into the male reproductive tract. Alcoholism: Clin Exp Res 1989; 13: 746-751. [DOI:10.1111/j.1530-0277.1989.tb00414.x]
60. Komiya A, Kato T, Kawauchi Y, Watanabe A, Fuse H. Clinical factors associated with sperm DNA fragmentation in male patients with infertility. Sci World J 2014; 2014: 868303. [DOI:10.1155/2014/868303]
61. Talebi AR, Sarcheshmeh AA, Khalili MA, Tabibnejad N. Effects of ethanol consumption on chromatin condensation and DNA integrity of epididymal spermatozoa in rat. Alcohol 2011; 45: 403-409. [DOI:10.1016/j.alcohol.2010.10.005]
62. Rahimipour M, Talebi AR, Anvari M, Sarcheshmeh AA, Omidi M. Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. Eur J Obstet Gynecol Reprod Biol 2013; 170: 423-428. [DOI:10.1016/j.ejogrb.2013.06.038]
63. Eid NA, Shibata MA, Ito Y, Kusakabe K, Hammad H, Otsuki Y. Involvement of Fas system and active caspases in apoptotic signalling in testicular germ cells of ethanol‐treated rats. Int J Androl 2002; 25: 159-167. [DOI:10.1046/j.1365-2605.2002.00341.x]
64. Ouko LA, Shantikumar K, Knezovich J, Haycock P, Schnugh DJ, Ramsay M. Effect of Alcohol Consumption on CpG Methylation in the Differentially Methylated Regions of H19 and IG‐DMR in Male Gametes- Implications for Fetal Alcohol Spectrum Disorders. Alcoholism: Clin Exp Res 2009; 33: 1615-1627. [DOI:10.1111/j.1530-0277.2009.00993.x]
65. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 2003; 27: 277-284.
66. Amanvermez R, Demir S, Tunçel ÖK, Alvur M, Agar E. Alcohol-induced oxidative stress and reduction in oxidation by ascorbate/L-cys/L-met in the testis, ovary, kidney, and lung of rat. Adv Ther 2005; 22: 548-558. [DOI:10.1007/BF02849949]
67. Cacciola G, Chioccarelli T, Ricci G, Meccariello R, Fasano S, Pierantoni R, et al. The endocannabinoid system in vertebrate male reproduction: a comparative overview. Mol Cell Endocrinol 2008; 286: S24-S30. [DOI:10.1016/j.mce.2008.01.004]
68. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril 2000; 73: 459-464. [DOI:10.1016/S0015-0282(99)00567-1]
69. Song B-J, Moon K-H, Upreti VV, Eddington ND, Lee IJ. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage. Curr Pharm Biotechnol 2010; 11: 434-443. [DOI:10.2174/138920110791591436]
70. Barenys M, Macia N, Camps L, de Lapuente J, Gomez-Catalan J, Gonzalez-Linares J, et al. Chronic exposure to MDMA (ecstasy) increases DNA damage in sperm and alters testes histopathology in male rats. Toxicol Lett 2009; 191: 40-46. [DOI:10.1016/j.toxlet.2009.08.002]
71. Battista N, Pasquariello N, Di Tommaso M, Maccarrone M. Interplay between endocannabinoids, steroids and cytokines in the control of human reproduction. J Neuroendocrinol 2008; 20: 82-89. [DOI:10.1111/j.1365-2826.2008.01684.x]
72. Fronczak CM, Kim ED, Barqawi AB. The insults of illicit drug use on male fertility. J Androl 2012; 33: 515-528. [DOI:10.2164/jandrol.110.011874]
73. Safarinejad MR, Asgari SA, Farshi A, Ghaedi G, Kolahi AA, Iravani S, et al. The effects of opiate consumption on serum reproductive hormone levels, sperm parameters, seminal plasma antioxidant capacity and sperm DNA integrity. Reprod Toxicol 2013; 36: 18-23. [DOI:10.1016/j.reprotox.2012.11.010]
74. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs E, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Nat Acad Sci 2006; 103: 9601-9606. [DOI:10.1073/pnas.0506468103]
75. Eskenazi B, Wyrobek AJ, Sloter E, Kidd S, Moore L, Young S, et al. The association of age and semen quality in healthy men. Hum Reprod 2003; 18: 447-454. [DOI:10.1093/humrep/deg107]
76. Pasqualotto FF, Sobreiro BP, Hallak J, Pasqualotto EB, Lucon AM. Sperm concentration and normal sperm morphology decrease and follicle‐stimulating hormone level increases with age. BJU Int 2005; 96: 1087-1091. [DOI:10.1111/j.1464-410X.2005.05806.x]
77. Morris I, Ilott S, Dixon L, Brison D. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod 2002; 17: 990-998. [DOI:10.1093/humrep/17.4.990]
78. Angelopoulou R, Plastira K, Msaouel P. Spermatozoal sensitive biomarkers to defective protaminosis and fragmented DNA. Reprod Biol Endocrinol 2007; 5: 36. [DOI:10.1186/1477-7827-5-36]
79. Youssry M, Ozmen B, Orief Y, Zohni K, Al-Hasani S. Human sperm DNA damage in the context of assisted reproductive techniques. Iran J Reprod Med 2007; 5: 137-150.
80. Moskovtsev SI, Willis J, Mullen JBM. Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril 2006; 85: 496-499. [DOI:10.1016/j.fertnstert.2005.05.075]
81. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003; 17: 1195-1214. [DOI:10.1096/fj.02-0752rev]
82. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 1996; 313: 17-29. [DOI:10.1042/bj3130017]
83. Alexeyev MF. Is there more to aging than mitochondrial DNA and reactive oxygen species? FEBS J 2009; 276: 5768-5787. [DOI:10.1111/j.1742-4658.2009.07269.x]
84. Carrell DT. Paternal influences on human reproductive success: Cambridge University Press; 2013. [DOI:10.1017/CBO9781139169349]
85. Barroso G, Morshedi M, Oehninger S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod 2000; 15: 1338-1344. [DOI:10.1093/humrep/15.6.1338]
86. Cocuzza M, Athayde KS, Agarwal A, Sharma R, Pagani R, Lucon AM, et al. Age-related increase of reactive oxygen species in neat semen in healthy fertile men. Urology 2008; 71: 490-494. [DOI:10.1016/j.urology.2007.11.041]
87. Potts J, Pasqualotto F. Seminal oxidative stress in patients with chronic prostatitis. Andrologia 2003; 35: 304-308. [DOI:10.1111/j.1439-0272.2003.tb00862.x]
88. de La Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod 2002; 17: 1649-1656. [DOI:10.1093/humrep/17.6.1649]
89. Schmid T, Eskenazi B, Baumgartner A, Marchetti F, Young S, Weldon R, et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod 2007; 22: 180-187. [DOI:10.1093/humrep/del338]
90. Azam S, Hadi N, Khan NU, Hadi SM. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med Sci Monitor 2003; 9: BR325-BR330.
91. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 1999; 59: 4375-4382.
92. Dupont C, Faure C, Sermondade N, Boubaya M, Eustache F, Clément P, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl 2013; 15: 622-625. [DOI:10.1038/aja.2013.65]
93. Kort HI, Massey JB, Elsner CW, Mitchell‐Leef D, Shapiro DB, Witt MA, et al. Impact of body mass index values on sperm quantity and quality. J Androl 2006; 27: 450-452. [DOI:10.2164/jandrol.05124]
94. Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 2012; 14: 24-31. [DOI:10.1038/aja.2011.59]
95. Gandhi G, Kaur G. Assessment of DNA damage in obese individuals. Res J Biol 2012; 2: 37-44.
96. Tunc O, Bakos H, Tremellen K. Impact of body mass index on seminal oxidative stress. Andrologia 2011; 43: 121-128. [DOI:10.1111/j.1439-0272.2009.01032.x]
97. Rybar R, Kopecka V, Prinosilova P, Markova P, Rubes J. Male obesity and age in relationship to semen parameters and sperm chromatin integrity. Andrologia 2011; 43: 286-291. [DOI:10.1111/j.1439-0272.2010.01057.x]
98. Momeni HR, Eskandari N. Effect of vitamin E on sperm parameters and DNA integrity in sodium arsenite-treated rats. Iran J Reprod Med 2012; 10: 249-256.
99. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod BioMed 2016; 14: 231-240.
100. Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 2004; 8: 616-627. [DOI:10.1016/S1472-6483(10)61641-0]
101. Silver EW, Eskenazi B, Evenson DP, Block G, Young S, Wyrobek AJ. Effect of antioxidant intake on sperm chromatin stability in healthy nonsmoking men. J Androl 2005; 26: 550-556. [DOI:10.2164/jandrol.04165]
102. Sen S, Chakraborty R. The role of antioxidants in human health. Oxidative stress: diagnostics, prevention, and therapy. 2011;1083:1-37. [DOI:10.1021/bk-2011-1083.ch001]
103. Wyrobek AJ. Methods and concepts in detecting abnormal reproductive outcomes of paternal origin. Reprod Toxicol 1993; 7: 3-16. [DOI:10.1016/0890-6238(93)90064-E]
104. Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med 2000; 224: 61-68. [DOI:10.1046/j.1525-1373.2000.22402.x]
105. Meeker JD, Hauser R. Exposure to polychlorinated biphenyls (PCBs) and male reproduction. Syst Biol Reprod Med 2010; 56: 122-131. [DOI:10.3109/19396360903443658]
106. Aktar W, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2009; 2: 1-12. [DOI:10.2478/v10102-009-0001-7]
107. Roeleveld N, Bretveld R. The impact of pesticides on male fertility. Curr Opin Obstet Gynecol 2008; 20: 229-233. [DOI:10.1097/GCO.0b013e3282fcc334]
108. Control CfD, Prevention. Chemistry and Toxicology of Cigarette Smoke and Biomarkers of Exposure and Harm. 2010.
109. Eftekhar M, Pourmasumi S, Sabeti P, Mirhosseini F. Relation of Second Hand Smoker and Effect on Pregnancy Outcome and Newborns Parameters. Womens Health Gynecol 2016; 6: 2.
110. Arabi M, Moshtaghi H. Influence of cigarette smoking on spermatozoa via seminal plasma. Andrologia 2005; 37: 119-124. [DOI:10.1111/j.1439-0272.2005.00664.x]
111. Briviba K, Kulling SE, Möseneder J, Watzl B, Rechkemmer G, Bub A. Effects of supplementing a low-carotenoid diet with a tomato extract for 2 weeks on endogenous levels of DNA single strand breaks and immune functions in healthy non-smokers and smokers. Carcinogenesis 2004; 25: 2373-2378. [DOI:10.1093/carcin/bgh249]
112. Künzle R, Mueller MD, Hänggi W, Birkhäuser MH, Drescher H, Bersinger NA. Semen quality of male smokers and nonsmokers in infertile couples. Fertil Steril 2003; 79: 287-291. [DOI:10.1016/S0015-0282(02)04664-2]
113. Calogero A, Polosa R, Perdichizzi A, Guarino F, La Vignera S, Scarfia A, et al. Cigarette smoke extract immobilizes human spermatozoa and induces sperm apoptosis. Reprod Biomed Online 2009; 19: 564-571. [DOI:10.1016/j.rbmo.2009.05.004]
114. Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas AJ. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril 2002; 78: 491-499. [DOI:10.1016/S0015-0282(02)03294-6]
115. Potts R, Newbury C, Smith G, Notarianni L, Jefferies T. Sperm chromatin damage associated with male smoking. Mutat Res 1999; 423: 103-111. [DOI:10.1016/S0027-5107(98)00242-5]
116. Yu B, Qi Y, Liu D, Gao X, Chen H, Bai C, et al. Cigarette smoking is associated with abnormal histone-to-protamine transition in human sperm. Fertil Steril 2014; 101: 51-57. [DOI:10.1016/j.fertnstert.2013.09.001]
117. Hamad M, Shelko N, Kartarius S, Montenarh M, Hammadeh M. Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters. Andrology 2014; 2: 666-677. [DOI:10.1111/j.2047-2927.2014.00245.x]
118. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 2006; 14: 159-166. [DOI:10.1038/sj.ejhg.5201538]
119. Olshan AF, Faustman EM. Male-mediated developmental toxicity. Reprod Toxicol 1993; 7: 191-202. [DOI:10.1016/0890-6238(93)90224-U]
120. Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B, Valsalan R. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics 2009; 64: 561-565. [DOI:10.1590/S1807-59322009000600011]
121. Falzone N, Huyser C, Becker P, Leszczynski D, Franken DR. The effect of pulsed 900‐MHz GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoa. Int J Androl 2011; 34: 20-26. [DOI:10.1111/j.1365-2605.2010.01054.x]
122. Sivani S, Sudarsanam D. Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem-a review. Biol Med 2012; 4: 202-216.
123. Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment Int 2014; 70: 106-112. [DOI:10.1016/j.envint.2014.04.015]
124. De Rosa M, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, et al. Traffic pollutants affect fertility in men. Hum Reprod 2003; 18: 1055-1061. [DOI:10.1093/humrep/deg226]
125. Boggia B, Carbone U, Farinaro E, Zarrilli S, Lombardi G, Colao A, et al. Effects of working posture and exposure to traffic pollutants on sperm quality. J Endocrinol Invest 2009; 32: 430-434. [DOI:10.1007/BF03346481]
126. Calogero AE, La Vignera S, Condorelli RA, Perdichizzi A, Valenti D, Asero P, et al. Environmental car exhaust pollution damages human sperm chromatin and DNA. J Endocrinol Invest 2011; 34: 139-143. [DOI:10.1007/BF03346722]
127. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 2005; 20: 2776-2783. [DOI:10.1093/humrep/dei122]
128. Ji G, Gu A, Zhou Y, Shi X, Xia Y, Long Y, et al. Interactions between exposure to environmental polycyclic aromatic hydrocarbons and DNA repair gene polymorphisms on bulky DNA adducts in human sperm. PLoS One 2010; 5: pii: e13145. [DOI:10.1371/journal.pone.0013145]
129. Rubes J, Rybar R, Prinosilova P, Veznik Z, Chvatalova I, Solansky I, et al. Genetic polymorphisms influence the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 2010; 683: 9-15. [DOI:10.1016/j.mrfmmm.2009.09.010]
130. Pacey AA. Environmental and lifestyle factors associated with sperm DNA damage. Hum Fertil 2010; 13: 189-193. [DOI:10.3109/14647273.2010.531883]
131. Horak S, Polanska J, Widlak P. Bulky DNA adducts in human sperm: relationship with fertility, semen quality, smoking, and environmental factors. Mutat Res 2003; 537: 53-65. [DOI:10.1016/S1383-5718(03)00051-2]
132. Jung A, Schuppe HC. Influence of genital heat stress on semen quality in humans. Andrologia 2007; 39: 203-215. [DOI:10.1111/j.1439-0272.2007.00794.x]
133. 1Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction 2005; 129: 505-514 [DOI:10.1530/rep.1.00531]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb