Volume 17, Issue 7 (July 2019 2019)                   IJRM 2019, 17(7): 493-502 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini S S, Gol A, Khaleghi M. The effects of the Lactobacillus acidophilus ATCC 4356 on the oxidative stress of reproductive system in diabetic male rats. IJRM 2019; 17 (7) :493-502
URL: http://ijrm.ir/article-1-1582-en.html
1- Department of Biology, Faculty of Science, University of Shahid Bahonar, Kerman, Iran.
2- Department of Biology, Faculty of Science, University of Shahid Bahonar, Kerman, Iran , agol@uk.ac.ir
Abstract:   (2501 Views)
Background: Oxidative stress plays an important role in the development of diabetic complications.
Objective: This study evaluated the impact of pre- and post-treatment with Lactobacillus acidophilus ATCC 4356 on the oxidant and anti-oxidant factors of testis and epididymis in streptozotocin-induced diabetic rats.
Materials and Methods: Thirty male Wistar rats (10 wk old) weighing 220-230 g. were divided into five groups (n = 6/ each): 1- normal group, 2- normal lactobacillus group,3- diabetic group, 4- diabetic + lactobacillus before (DLB) group, and 5- diabetic + lactobacillus after (DLA) group. The normal and diabetic groups received daily 1 mL normal saline for 6 wk. Normal lactobacillus group received daily L. acidophilus for 6 wk. Group DLB received daily L. acidophilus for 2 wk before diabetes and for 4 wk after diabetes. Group DLA received daily 1 mL normal saline for 2 wk before diabetes and L.
acidophilus for 4 wk after diabetes. The dose of L. acidophilus was 1 × 109 CFU/mL.
Results: The administration of L. acidophilus worsened blood glucose level and reduced the levels of Malondialdehyde (p = ≤ 0.0001) and Hydrogen peroxide (p ≤ 0.0001) and, Catalase and Glutathione peroxidase activity increased in the testis. In epididymis, Glutathione peroxidase and Catalase (p = 0.013) activity increased and Hydrogen peroxide concentration reduced, while Malondialdehyde concentration did not show any changes compared to the diabetic rats. Also, there was no significant difference between DLB and DLA groups, in these markers.
Conclusion: Data obtained suggests that L. acidophilus has anti-oxidant effects on the testis and sometime in the epididymis in diabetic rats.
Full-Text [PDF 627 kb]   (944 Downloads) |   |   Full-Text (HTML)  (567 Views)  
Type of Study: Original Article |

References
1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33 (Suppl.): 62-69. [DOI:10.2337/dc10-S062] [PMID] [PMCID]
2. IDF (International Diabetes Federation). IDF Diabetes Atlas. 7 Ed. Belgium: IDF Publication; 2015.
3. Soudamani S, Yuvaraj S, Rengarajan S, Sivakumar R, Malini T, Balasubramanian K. Effects of streptozotocin-diabetes and insulin replacement on androgen and estrogen receptor concentrations in the epididymis of Wistar rats. Journal of Endocrinology and Reproduction 2006; 10: 59-61.
4. Balasubramanian K, Sivashanmugam P, Thameemdheen S, Govindarajulu P. Effect of diabetes mellitus on epididymal enzymes of adult rats. Indian J Exp Biol 1991; 29: 907-909.
5. Baccetti B, La Marca A, Piomboni P, Capitani S, Bruni E, Petraglia F, et al. Insulin-dependent diabetes in men is associated with hypothalamopituitary derangement and with impairment in semen quality. Hum Reprod 2002; 17: 2673-2677. [DOI:10.1093/humrep/17.10.2673] [PMID]
6. Vignon F, Le Faou A, Montagnon D, Pradignac A, Cranz C, Winiszewsky P, et al. Comparative study of semen in diabetic and healthy men. Diabete Metab 1991; 17: 350-354.
7. Flatt PR, Abdel-Wahab YH, Boyd AC, Barnett CR, O'Harte FP. Pancreatic B-cell dysfunction and glucose toxic ity in non-insulin-dependent diabetes. Proc Nutr Soc 1997; 56: 243-262. [DOI:10.1079/PNS19970029] [PMID]
8. Mallidis C, Agbaje I, O'Neill J, McClure N. The influence of type 1 diabetes mellitus on spermatogenic gene expression. Fertil Steril 2009; 92: 2085-2087. [DOI:10.1016/j.fertnstert.2009.06.006] [PMID]
9. Makker K, Agarwal A, Sharma R. Oxidative stress and male infertility. Indian J Med Res 2009; 129: 357-367.
10. Butchi Akondi R, Kumar P, Annapurna A, Pujari M. Protective effect of rutin and naringin on sperm quality in streptozotocin (stz) induced type 1 diabetic rats. Iran J Pharm Res 2011; 10: 585-596.
11. Shoorei H, Khaki A, Khaki AA, Hemmati AA, Moghimian M, Shokoohi M. The ameliorative effect of carvacrol on oxidative stress and germ cell apoptosis in testicular tissue of adult diabetic rats. Biomed Pharmacother 2019; 111: 568-578. [DOI:10.1016/j.biopha.2018.12.054] [PMID]
12. Mates JM, Sanchez-Jimenez F. Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 1999; 4: D339-345. [DOI:10.2741/A432]
13. Jornot L, Petersen H, Junod AF. Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions. Biochem J 1998; 335: 85-94. [DOI:10.1042/bj3350085] [PMID] [PMCID]
14. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23: 599-622. [DOI:10.1210/er.2001-0039] [PMID]
15. Kaleghi M, Parham phar M. Lactobacillus as probiotic. Kerman: Shahid Bahonar University of Kerman Publications; 1395: 14-15.
16. Joint F. WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Canada: London Ontario; 2002.
17. Harisa GI, Taha EI, Khalil AF, Salem MM. Oral administration of Lactobacillus acidophilus restores nitric oxide level in diabetic rats. Aust J Basic Appl Sci 2009; 3: 2963-2969.
18. Uskova MA, Kravchenko LV. Antioxidant properties of lactic acid bacteria--probiotic and yogurt strains. Vopr Pitan 2009; 78: 18-23.
19. Bharti V, Mehta A, Mourya GK, Ahirwal L, Bajpai VK, Shukla S. Anti-hyperglycemic potential of Lactobacillus spp. in alloxan-induced wistar rats. Pak J Pharm Sci 2017; 30 (Suppl.): 597-600.
20. Omolaoye TS, Skosana BT, du Plessis SS. Diabetes mellitus-induction: Effect of different streptozotocin doses on male reproductive parameters. Acta Histochem 2018; 120: 103-109. [DOI:10.1016/j.acthis.2017.12.005] [PMID]
21. Singh S, Sharma RK, Malhotra S, Pothuraju R, Shandilya UK. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef Microbes 2017; 8: 243-255. [DOI:10.3920/BM2016.0090] [PMID]
22. Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121-126. [DOI:10.1016/S0076-6879(84)05016-3]
23. Plewa MJ, Smith SR, Wagner ED. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutat Res 1991; 247: 57-64. [DOI:10.1016/0027-5107(91)90033-K]
24. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 1968; 125: 189-198. [DOI:10.1016/0003-9861(68)90654-1]
25. Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 2000; 151: 59-66. [DOI:10.1016/S0168-9452(99)00197-1]
26. Adedara IA, Awogbindin IO, Anamelechi JP, Farombi EO. Garcinia kola seed ameliorates renal, hepatic, and testicular oxidative damage in streptozotocin-induced diabetic rats. Pharm Biol 2015; 53: 695-704. [DOI:10.3109/13880209.2014.937504] [PMID]
27. Gobbo MG, Costa CF, Silva DG, de Almeida EA, Góes RM. Effect of melatonin intake on oxidative stress biomarkers in male reproductive organs of rats under experimental diabetes. Oxid Med Cell Longev 2015; 2015: 614579. [DOI:10.1155/2015/614579] [PMID] [PMCID]
28. Kakkar R, Kalra J, Mantha SV, Prasad K. Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem 1995; 151: 113-119. [DOI:10.1007/BF01322333] [PMID]
29. Maritim AC, Sanders RA, Watkins JB, 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17: 24-38. [DOI:10.1002/jbt.10058] [PMID]
30. Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, et al. Antioxidant properties of probiotic bacteria. Nutrients 2017; 9: 521. [DOI:10.3390/nu9050521] [PMID] [PMCID]
31. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 2015; 9: 1-15. [DOI:10.1038/ismej.2014.99] [PMID] [PMCID]
32. Yadav H, Jain S, Sinha PR. The effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei on gastropathic consequences in diabetic rats. J Med Food 2008; 11: 62-68. [DOI:10.1089/jmf.2006.136] [PMID]
33. Dallanora S, Medeiros de Souza Y, Deon RG, Tracey CA, Freitas-Vilela AA, Wurdig Roesch LF, et al. Do probiotics effectively ameliorate glycemic control during gestational diabetes? A systematic review. Arch Gynecol Obstet 2018; 298: 477-485. [DOI:10.1007/s00404-018-4809-2] [PMID]
34. Sharma P, Bhardwaj P, Singh R. Administration of lactobacillus casei and bifidobacterium bifidum ameliorated hyperglycemia, dyslipidemia, and oxidative stress in diabetic rats. Int J Prev Med 2016; 7: 102. [DOI:10.4103/2008-7802.188870] [PMID] [PMCID]
35. Jeong JH, Jang S, Jung BJ, Jang KS, Kim BG, Chung DK, et al. Differential immune-stimulatory effects of LTAs from different lactic acid bacteria via MAPK signaling pathway in RAW 264.7 cells. Immunobiology 2015; 220: 460-466. [DOI:10.1016/j.imbio.2014.11.002] [PMID]
36. Kumar N, Tomar SK, Thakur K, Singh AK. The ameliorative effects of probiotic Lactobacillus fermentum strain RS-2 on alloxan induced diabetic rats. Journal of Functional Foods 2017; 28: 275-284. [DOI:10.1016/j.jff.2016.11.027]
37. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 2012; 28: 539-543. [DOI:10.1016/j.nut.2011.08.013] [PMID]
38. Chen L, Liu W, Li Y, Luo S, Liu Q, Zhong Y, et al. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int Immunopharmacol 2013; 17: 108-115. [DOI:10.1016/j.intimp.2013.05.018] [PMID]
39. Amdekar S, Singh V. Lactobacillus acidophilus maintained oxidative stress from reproductive organs in collagen-induced arthritic rats. J Hum Reprod Sci 2016; 9: 41-46. [DOI:10.4103/0974-1208.178638] [PMID] [PMCID]
40. Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, et al. Antioxidant properties of probiotic bacteria. Nutrients 2017; 9: 521. [DOI:10.3390/nu9050521] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb