Volume 7, Issue 4 (7-2009)                   IJRM 2009, 7(4): 145-152 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eftekhar Vaghefi S H, Zareii Fard N, Shahidzadeh Z, Nematollahi-mahani S N. Isolation and primary culture of ES-like colonies from NMRI mouse embryos. IJRM 2009; 7 (4) :145-152
URL: http://ijrm.ir/article-1-163-en.html
1- Department of Anatomy, Afzalipour School of Medicine, Kerman, Iran
2- Department of Anatomy, School of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
3- Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
4- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran , nnematollahi@kmu.ac.ir
Abstract:   (2417 Views)
Background: Embryonic stem (ES) cells are pluripotent cells conventionally isolated from early embryos. Studies have shown that ES cells serve as a practical model for biomedical studies.
Objective: The aim of the present study was to optimize culture conditions for establishment of ES-like colonies from NMRI mouse blastocysts as well as 2-cell stage embryos.
Materials and Methods: Both expanded blastocysts and 2-cell stage embryos were co-cultured on mouse embryonic fibroblast (MEF). Plating capacity and formation of Inner cell mass (ICM) were examined daily. The differentiation and growth behavior of ICM cells were examined with various procedures. ICMs derived from initially cultured 2-cell or blastocyst embryos were disaggregated either mechanically or enzymatically and seeded onto MEF with or without leukemia inhibitory factor (LIF). The resulted colonies were disaggregated and reseeded onto MEF and the colonies that were morphologically similar to ES cells were evaluated for pluripotency using alkaline phosphatase (ALP) expression as a stem cell marker.
Results: No morphologically good ES-like colony was isolated from 2-cell embryos after passages while 273 (79%) good-looking ICMs were isolated from 352 blastocysts. Four sets of colonies remained undifferentiated following passages. Enzymatic method of ICM disaggregation was superior to the mechanical method. Besides all ES-like colonies were obtained from the ICMs cultured in presence of MEF and LIF.
Conclusion: Our results show that NMRI mouse ICMs could be isolated and cultured from blastocyst stage embryos with a suitable culture system and ES-like cell colonies remain undifferentiated when cultured with MEF and LIF.
Full-Text [PDF 397 kb]   (648 Downloads) |   |   Full-Text (HTML)  (398 Views)  
Type of Study: Original Article |

References
1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154-156. [DOI:10.1038/292154a0]
2. Rossant J. Stem cells from the Mammalian blastocyst. Stem Cells 2001; 19: 477-482. [DOI:10.1634/stemcells.19-6-477]
3. Pease S, Braghetta P, Gearing D, Grail D, Williams RL. Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol 1990; 141: 344-352. [DOI:10.1016/0012-1606(90)90390-5]
4. Sukoyan MA, Kerkis AY, Mello MR, Kerkis IE, Visintin JA, Pereira LV. Establishment of new murine embryonic stem cell lines for the generation of mouse models of human genetic diseases. Braz J Med Biol Res 2002; 35: 535-542. [DOI:10.1590/S0100-879X2002000500004]
5. Rathjen PD, Lake J, Whyatt LM, Bettess MD, Rathjen J. Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy. Reprod Fertil Dev 1998; 10: 31-47. [DOI:10.1071/R98041]
6. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al.Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271-278. [DOI:10.1006/dbio.2000.9912]
7. Pain B, Chenevier P, Samarut J. Chicken embryonic stem cells and transgenic strategies. Cells Tissues Organs 1999; 165: 212-219. [DOI:10.1159/000016701]
8. Sukoyan MA, Golubitsa AN, Zhelezova AI, Shilov AG, Vatolin SY, Maximovsky LP, et al. Isolation and cultivation of blastocyst-derived stem cell lines from American mink (Mustela vison). Mol Reprod Dev 1992; 33: 418-431. [DOI:10.1002/mrd.1080330408]
9. Doetschman T, Williams P, Maeda N. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev Biol 1988; 127: 224-227. [DOI:10.1016/0012-1606(88)90204-7]
10. Chen LR, Shiue YL, Bertolini L, Medrano JF, BonDurant RH, Anderson GB. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 1999; 52:195-212. [DOI:10.1016/S0093-691X(99)00122-3]
11. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science1998; 282:1145-1147. [DOI:10.1126/science.282.5391.1145]
12. Boeuf H, Merienne K, Jacquot S, Duval D, Zeniou M, Hauss C, et al. The ribosomal S6 kinases, cAMP-responsive element-binding, and STAT3 proteins are regulated by different leukemia inhibitory factor signaling pathways in mouse embryonic stem cells. J Biol Chem 2001; 276 :46204-46211. [DOI:10.1074/jbc.M106718200]
13. Oh SK, Kim HS, Park YB, Seol HW, Kim YY, Cho MS, et al. Methods for expansion of human embryonic stem cells. Stem Cells 2005; 23:605-609. [DOI:10.1634/stemcells.2004-0297]
14. Sasaki E, Hanazawa K, Kurita R, Akatsuka A, Yoshizaki T, Ishii H, et al. Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells 2005; 23:1304-1313. [DOI:10.1634/stemcells.2004-0366]
15. Robertson EJ. Teratocarcinomas and embryonic stem cells: a practical approach 1987: IRL Press Washington. 70-93.
16. Axelrod HR. Embryonic stem cell lines derived from blastocysts by a simplified technique. Dev Biol 1984; 101: 225-228. [DOI:10.1016/0012-1606(84)90133-7]
17. Wobus AM, Holzhausen H, Jäkel P, Schöneich J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp Cell Res 1984; 152: 212-219. [DOI:10.1016/0014-4827(84)90246-5]
18. Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 2006; 439: 216-219. [DOI:10.1038/nature04277]
19. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985; 87: 27-45.
20. Downing GJ, Battey JF Jr. Technical assessment of the first 20 years of research using mouse embryonic stem cell lines. Stem Cells 2004; 22: 1168-1180. [DOI:10.1634/stemcells.2004-0101]
21. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998; 95: 13726-13731. [DOI:10.1073/pnas.95.23.13726]
22. Rathjen J, Rathjen PD. Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr Opin Genet Dev 2001; 11: 587-594. [DOI:10.1016/S0959-437X(00)00237-9]
23. Kim HS, Son HY, Kim S, Lee GS, Park CH, Kang SK, et al. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote 2007; 15: 55-63. [DOI:10.1017/S0967199406003972]
24. Robertson E.J. Teratocarcinomas and embryonic stem cells: a practical approach, IRL Press Washington, 1987: 70-93.
25. Nematollahi-mahani SN, Pahang H, Moshkdanian G, Nematollahi-mahani A. Effect of embryonic fibroblast cell co-culture on development of mouse embryos following exposure to visible light. J Assist Reprod Genet 2009; 26:129-135. [DOI:10.1007/s10815-008-9290-6]
26. Aghaee-afshar M, Rezazadehkermani M, Asadi A, Malekpour-afshar R, Shahesmaeili A, Nematollahi-mahani SN. Potential of Human Umbilical Cord Matrix and Rabbit Bone Marrow-Derived Mesenchymal Stem Cells in Repairing of Surgically Incised Rabbit External Anal Sphincter. Dis Colon Rectum 2009; 52: 1753-1761. [DOI:10.1007/DCR.0b013e3181b55112]
27. Tesar PJ. Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proc Natl Acad Sci USA 2005; 102: 8239-8244. [DOI:10.1073/pnas.0503231102]
28. Delhaise F, Bralion V, Schuurbiers N, Dessy F. Establishment of an embryonic stem cell line from 8-cell stage mouse embryos. Eur J Morphol 1996; 34: 237-243. [DOI:10.1076/ejom.34.4.237.13046]
29. Verma V, Gautam SK, Singh B, Manik RS, Palta P, Singla SK, et al. Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev 2007; 74: 520-529. [DOI:10.1002/mrd.20645]
30. Richter KS. The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr Opin Obstet Gynecol 2008; 20: 292-304. [DOI:10.1097/GCO.0b013e3282fe743b]
31. Ouhibi N, Hamidi J, Guillaud J, Ménézo Y.Co-culture of 1-cell mouse embryos on different cell supports. Hum Reprod 1990; 5: 737-743. [DOI:10.1093/oxfordjournals.humrep.a137178]
32. Nematollahi N, Valojerdi MR. Effect of Vero cell coculture on the development of frozen-thawed two-cell mouse embryos. J Assist Reprod Genet 1999; 16: 380-384. [DOI:10.1023/A:1020598031275]
33. Baghaban Eslami Nejad MR, Rezazadeh Valojerdi M, Kazemi Ashtiani S. A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development. J Exp Clin Assist Reprod 2005; 2: 7. [DOI:10.1186/1743-1050-2-7]
34. Sakkas D, Urner F, Menezo Y, Leppens G. Effects of glucose and fructose on fertilization, cleavage, and viability of mouse embryos in vitro. Biol Reprod 1993; 49: 1288-1292. [DOI:10.1095/biolreprod49.6.1288]
35. Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci USA 1997; 94: 5709-5712. [DOI:10.1073/pnas.94.11.5709]
36. Wang Q, Fang ZF, Jin F, Lu Y, Gai H, Sheng HZ. Derivation and growing human embryonic stem cells on feeders derived from themselves. Stem Cells 2005; 23: 1221-1227. [DOI:10.1634/stemcells.2004-0347]
37. Wang L, Duan E, Sung LY, Jeong BS, Yang X, Tian XC. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol Reprod 2005; 73: 149-155. [DOI:10.1095/biolreprod.104.037150]
38. Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 2005; 85: 635-678. [DOI:10.1152/physrev.00054.2003]
39. Rossant J. Stem cells in the mammalian blastocyst. Harvey Lect 2001; 97: 17-40. [DOI:10.1634/stemcells.19-6-477]
40. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372-376. [DOI:10.1038/74199]
41. Boiani M, Gentile L, Gambles VV, Cavaleri F, Redi CA, Schöler HR. Variable reprogramming of the pluripotent stem cell marker Oct4 in mouse clones: distinct developmental potentials in different culture environments. Stem Cells 2005; 23: 1089-1094. [DOI:10.1634/stemcells.2004-0352]
42. Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci 2000; 113: 5-10.
43. Bryja V, Bonilla S, Cajánek L, Parish CL, Schwartz CM, Luo Y, et al. An efficient method for the derivation of mouse embryonic stem cells. Stem Cells 2006; 24: 844-849. [DOI:10.1634/stemcells.2005-0444]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb