Volume 8, Issue 1 (7-2010)                   IJRM 2010, 8(1): 10-17 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Maji S, Datta U, Hembram M L. A new sperm agglutinin factor from marine snail Telescopium telescopium: An evaluation with goat (Capra hircus) cauda epididymal spermatozoa. IJRM 2010; 8 (1) :10-17
URL: http://ijrm.ir/article-1-169-en.html
1- Department of Veterinary Gynaecology and Obstetrics, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, West Bengal, India
2- Department of Veterinary Gynaecology and Obstetrics, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, West Bengal, India , uttamdtt@yahoo.com
Abstract:   (2296 Views)
Background: Lectins, the multivalent carbohydrate binding proteins are also employed to ascertain differentiation and characterization of the specific cell surface carbohydrate ligands/ receptors of different cell types including spermatozoa and posses novel biomedical importance.
Objective: SF50, the sialic acid specific lectin, was employed on goat cauda epididymal spermatozoa to investigate its effect(s) on the physiology of sperm cells if any.
Materials and Methods: A protein factor, SF50 was obtained from spermatheca/ ovotestis gland of marine snail Telescopium telescopium by precipitation with 50% ammonium sulfate. Different concentrations of SF50 and Bovine serum albumin (BSA) as control were added with washed goat cauda epididymal spermatozoa and observed immediately and after 20 s and 60 s of incubation.
Results: SF50 treated sperm cells exhibited head-to-head type agglutination. The degree of agglutination varied (p<0.001) with the concentration of SF50 used. Agglutinability of spermatozoa were significantly higher (p<0.001) with higher concentration of SF50 as well as incubation period had significant influence (p<0.001) on the number of agglutinated spermatozoa. Agglutination and immobilization of spermatozoa occurred instantly with higher doses of SF50 that of lower doses. Spermatozoan immobilization was irreversible. 
Conclusion: Experiment demonstrates sperm surface components altered when the cells were incubated with SF50 and their plasma membrane is heterogeneous in nature. Therefore, it could be that, SF50 binding protein(s) plausibly remain in the acrosomal region. This observation may prove useful to correlate changes in the sperm surface during their various biological events, moreover, SF50 as sperm surface biomarker and as local barrier contraceptive could be thought off.
Full-Text [PDF 193 kb]   (711 Downloads) |   |   Full-Text (HTML)  (411 Views)  
Type of Study: Original Article |

References
1. Myles DG, Primakoff P. Establishment of sperm surface topography during development analyzed with monoclonal antibodies. In: Andre. J. (ed). The Sperm Cell. The Hague, Bostan, London: Martiniius Nijhoff Publishers 1983; 127-130. [DOI:10.1007/978-94-009-7675-7_25]
2. Myles DG, Primakoff P. Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization. J Cell Biol 1984; 99: 1634-1641. [DOI:10.1083/jcb.99.5.1634]
3. Olson GE, Danjo BJ. Surface changes in rat spermatozoa during epididymal transit. Biol Reprod 1981; 24: 431-443. [DOI:10.1095/biolreprod24.2.431]
4. Brown CR, Von Glos KI, Jones R. Changes in plasma membrane glycoproteins of rat spermatozoa during maturation in the epididymis. J Cell Biol 1983; 96: 256-264. [DOI:10.1083/jcb.96.1.256]
5. Jones R. Membrane remodeling during sperm maturation in the epididymis. Oxford Reviews of Reproductive Biology 1989; 11: 185-337.
6. Schwarz MA, Koehler JK. Alterations in lectin binding to guinea pig spermatozoa accompanying in-vitro capacitation and acrosome reaction. Biol Reprod 1979; 21: 1295-1307. [DOI:10.1095/biolreprod21.5.1295]
7. Sanz L, Calvete JJ, Mann K, Gabius HJ, Töpfer-Petersen E. Isolation and biochemical characterization of heparin binding proteins from boar seminal plasma: a dual role for sperm adhesions in fertilization. Mol Reprod Dev 1993; 35: 37-43. [DOI:10.1002/mrd.1080350107]
8. Gwatkin R, Williams D. Receptor activity of the solubilized hamster and mouse zona pellucida before and after the zona reaction. J Reprod Fertil 1976; 19: 55-59.
9. Green DP. Mammalian fertilization as a biological machine: a working model for adhesion and fusion of sperm and oocyte. Human Reprod 1993; 8: 91-96. [DOI:10.1093/oxfordjournals.humrep.a137883]
10. Myles DG. Molecular mechanisms of sperm-egg membrane binding and fusion in mammals. Dev Biol 1993; 158: 35-45. [DOI:10.1006/dbio.1993.1166]
11. Kallajoki M, Malmi R, Virtanen I, Souminen J. Glycoconjugates of human sperm surface. A study with fluorescent lectin conjugates and Lens culinaris agglutinin affinity chromatography. Cell Biol Int Rep 1985; 9: 151-164. [DOI:10.1016/0309-1651(85)90089-X]
12. Bao SN, de Souza W. Lectin binding sites on head structures of the spermatid and spermatozoon of the mosquito Culex quinquefasciatus (Diptera, Culicidae). Histochemistry 1992; 98: 365-371. [DOI:10.1007/BF00271072]
13. Okamura N, Dacheux F, Venien A, Onoe S, Huet JC, Dacheux JL. Localization of a maturation-dependent epididymal sperm surface antigen recognized by a monoclonal antibody raised against a 135- kilodalton protein in porcine epididymal fluid. Bio Reprod 1992 b; 47: 1040-1052. [DOI:10.1095/biolreprod47.6.1040]
14. Lis H, Sharon N. Lectins as molecules and as tools. Annual Review of Biochemistry 1986; 55: 35-67. [DOI:10.1146/annurev.bi.55.070186.000343]
15. Perez-Pe R, Marti JI, Tejedor A, Muino-Blanco T, Cebrian-Perez JA. Sperm-lectin agglutination combined with swim-up leads to an efficient selection of highly motile, viable and heterogeneous ram spermatozoa. Theriogenology 1995; 51 3: 623-636. [DOI:10.1016/S0093-691X(99)00015-1]
16. Sinowatz F, Friess AE. Localization of lectin receptors on bovine epididymal spermatozoa using a colloidal gold technique. Histochemistry 1983; 79: 335-344. [DOI:10.1007/BF00491769]
17. Sinowatz F, Volgmayr JK, Gabius HJ, Friess AE. Cytochemical analysis of mammalian sperm membranes. Prog Histoch Cytoch 1989; 194: 1-74. [DOI:10.1016/S0079-6336(89)80013-0]
18. Cantarelli M, Perishi A, Torelli MG, La SG. In-vitro test to assess human sperm fertilizing ability. Acta Eur Fertil 1992; 23: 5-14.
19. Mladenovic I, Hajducovic L, Genbacev O, Cuperlovic M, Movsesijan M. Lectin binding as a biological test in vitro for prediction of functional activity of human spermatozoa. Gamete Res 1993; 24; 403-413.
20. Goldstein IJ, Hughes RC, Monsigny A, Osawa T, Sharon N. What should be called lectin? Nature 1980; 285: 66-68. [DOI:10.1038/285066b0]
21. Gilboa-Garber N, Susswein AJ, Mizrabi L, Avichezer D. Purification and characterization of the gonad lectin of Aplysia depilans. FEBS Letter 1985; 181: 260-270. [DOI:10.1016/0014-5793(85)80273-8]
22. Yeaton RW. Invertebrate lectins. II. Diversity of specificity. Biological synthesis and function in recognition. Dev Comp Immunol 1981; 5: 535-545. [DOI:10.1016/S0145-305X(81)80028-6]
23. Pakrashi A, Datta U. in vitro sperm agglutination and spermicidal activity of protein isolated from a marine mollusc Telescopium telescopium (gastropoda). Indian J Mar Sci 2001; 30: 93-97.
24. Datta U, Pakrashi A. Morphological features of sperm from a marine mollusc (Telescopium telescopium), some immunological and physicochemical studies of extract from spermatheca gland. Proceeding of Zoological Society (Calcutta), India 2000; 53 1: 15-23.
25. Lowry OH, Rossebrough NJ, Farr Al, Randall RJ. Protein measurement with the folin-phenol reagent. Journal of Biochem 1951; 193: 265-266.
26. Laemmli UK. Cleavage of structural proteins during the assembly at the head of bacteriophase-T-4. Nature 1970; 227: 680-685. [DOI:10.1038/227680a0]
27. Hudson L, Hay FC. Practical Immunology. 3rd ed. Oxford, London: Blackwell Scientific Publication; 1989.
28. Sander FV, Cramer SD. A practical method for the spermicidal action of chemical contraceptive. Human Fertility 1941; 6: 134-137.
29. World Health Organization 1999 WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge, UK: Cambridge University Press.
30. Gopalakrishnan K. Current concept in fertility regulation and reproduction. (eds). Puri CP, Vanlook PFA. New Delhi; Wiley-Eastern LTD. 1992; 157-164.
31. Duncan DB. Multiple range and multiple F test. Biometrics 1995; 11: 1-42. [DOI:10.2307/3001478]
32. Ireland CM, Roll DM, Molinski TF, Mckee TC, Zarbriske TM, Swersey JC. 1988 Uniqueness of marine environment. Categories of marine natural products from invertebrates. In: Biomedical importance of marine organisms. California, USA: California Academy of Science. 41-47.
33. Spicer SS. Advantages of histochemistry for the study of cell biology. Histochemical Journal 1993; 25: 531-547. [DOI:10.1007/BF02388061]
34. Nicolson GL. The interaction of lectins with animal cell surfaces. Rev Cytol 1974; 39: 89-90. [DOI:10.1016/S0074-7696(08)60939-0]
35. Fraizer W, Glaser L. Surface components and cell recognition. Rev Biochem 1979; 48: 491-523. [DOI:10.1146/annurev.bi.48.070179.002423]
36. Monsigny M. The roles of carbohydrates in cell recognition, endogenous lectins. Biol Cell 1984; 51 (special issue): 113.
37. Peleg BA, Ianconscu M. Sperm agglutination and sperm adsorption due to mixoviruses. Nature 1966; 211: 1211-1212. [DOI:10.1038/2111211a0]
38. Koehler JK, Sato K. Changes in lectin labeling pattern of mouse spermatozoa accompanying capacitation and acrosome reaction. J Cell Biol 1978; 79: 165a.
39. Kinsey WH, Koehler JK. Cell surface changes associated with in vitro capacitation of hamster sperm. J Ultrastruct Res 1978; 64: 1-13. [DOI:10.1016/S0022-5320(78)90002-3]
40. Ahuja KK. Lectin-coated agarose beads in the investigation of sperm capacitation in hamster. Dev Biol 1984; 104: 131-142. [DOI:10.1016/0012-1606(84)90043-5]
41. Lewin LM, Weissenberg R, Sobel JS, Marcus Z, Nebel L. Differences in Con A-FITC binding of rat spermatozoa during epididymal maturation and capacitation. Arch Androl 1979; 2: 279-281. [DOI:10.3109/01485017908987326]
42. Gordon M, Dandekar PV, Bartoszewiez W. The surface coat of epididymal, ejaculated and capacitated sperm. J Ultrastruct Res 1975; 50: 199-207. [DOI:10.1016/S0022-5320(75)80051-7]
43. O'Rand M. restriction of a sperm surface antigen's mobility during capacitation. Dev Biol 1977; 55: 260-270. [DOI:10.1016/0012-1606(77)90171-3]
44. Talbot P, Franklin LE. Surface modification of guinea pig sperm during in vitro capacitation: An assessment using lectin-induced agglutination of living sperm. J Exp Zool 1978; 203: 1-14. [DOI:10.1002/jez.1402030102]
45. Talbot P, Franklin LE. Trypsinization increases lectin-induced agglutinability of uncapacitated guinea pig sperm. J Exp Zool 1978 b; 204: 291-297. [DOI:10.1002/jez.1402040217]
46. Talbot P, Chaeon R. Detection of modifications in the tail of capacitated guinea pig sperm using lectins. J Exp Zool 1981; 216: 435-444. [DOI:10.1002/jez.1402160312]
47. Courtens JL, Fournier-Delpech S. Modification in the plasmamembranes of epididymal ram spermatozoa during maturation and incubation in utero. J Ultrastruct Res 1979; 68: 136-148. [DOI:10.1016/S0022-5320(79)90149-7]
48. Nicolson Gl, Usui N, Yanagimachi R, Yanagimachi H, Smith JR. Lectin binding sites on the plasmamembranes of rabbit spermatozoa: changes in surface receptors during epididymal maturation and after ejaculation. The J Cell Biol 1977; 74: 950-962. [DOI:10.1083/jcb.74.3.950]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb