Volume 19, Issue 1 (January 2021)                   IJRM 2021, 19(1): 87-96 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bunsueb S, Lapyuneyong N, Tongpan S, Arun S, Iamsaard S. Chronic stress increases the tyrosine phosphorylation in female reproductive organs: An experimental study. IJRM 2021; 19 (1) :87-96
URL: http://ijrm.ir/article-1-1756-en.html
1- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
2- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen, Thailand. , sittia@kku.ac.th
Abstract:   (1647 Views)
Background: Changes in tyrosine-phosphorylated (TyrPho) protein expressions have demonstrated stress in males. In females, chronic stress (CS) is a major cause of infertility, especially anovulation. However, the tyrosine phosphorylation in the female reproductive system under stress conditions has never been reported.
Objective: To investigate the alteration of TyrPho protein expression in ovary, oviduct, and uterus of CS rats. 
Materials and Methods: In this experimental study, 16 female Sprague-Dawley rats (5 wk: 220-250 gr) were divided into control and CS groups (n = 8/group). Every day, the CS animals were immobilized within a restraint cage and individually forced to swim in cold water for 60 consecutive days. Following the stress induction, the ovary, oviduct, and uterus of all rats were observed for their morphologies. The total protein profiles of all tissues were revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) before detecting TyrPho proteins using western blot. Intensity analysis was used to compare the expression of proteins between groups.
Results: The results showed that the morphology and weights of ovary and oviduct in the CS group were not different from control. In contrast, the CS significantly increased the uterine weight as compared to control. Moreover, the expressions of TyrPho proteins in the ovary (72, 43, and 28 kDas), oviduct (170, 55, and 43 kDas), and uterus (55, 54, and 43 kDas) were increased in CS group as compared to those of control.
Conclusion: The increased expressions of TyrPho proteins in ovary, oviduct, and uterus could be potential markers used to explain some machanisms of female infertility caused from chronic stress.
 
Full-Text [PDF 15226 kb]   (741 Downloads) |   |   Full-Text (HTML)  (382 Views)  
Type of Study: Original Article | Subject: Reproductive Biology

References
1. Vander Borghtb M, Wyns Ch. Fertility and infertility: Definition and epidemiology. Clin Biochem 2018; 62: 2-10. [DOI:10.1016/j.clinbiochem.2018.03.012] [PMID]
2. Barbieri RL. Female infertility. In: Strauss J, Barbieri R. Yen and Jaffe's reproductive endocrinology. 8th Ed. Netherland: Elsevier; 2019. 556-581. [DOI:10.1016/B978-0-323-47912-7.00022-6]
3. Pandey AK, Gupta A, Tiwari M, Prasad Sh, Pandey AN, Yadav PK, et al. Impact of stress on female reproductive health disorders: Possible beneficial effects of shatavari (Asparagus racemosus). Biomed Pharmacother 2018; 103: 46-49. [DOI:10.1016/j.biopha.2018.04.003] [PMID]
4. Farkas J, Rigó A, Demetrovics Z. Psychological aspects of the polycystic ovary syndrome. Gynecol Endocrinol 2013; 30: 95-99. [DOI:10.3109/09513590.2013.852530] [PMID]
5. Rooney KL, Domar AD. The relationship between stress and infertility. Dialogues Clin Neurosci 2018; 20: 41-47. [DOI:10.31887/DCNS.2018.20.1/klrooney] [PMCID]
6. Kala M, Nivsarkar M. Role of cortisol and superoxide dismutase in psychological stress induced anovulation. Gen Comp Endocrinol 2016; 225: 117-124. [DOI:10.1016/j.ygcen.2015.09.010] [PMID]
7. Ouni E, Vertommen D, Amorim ChA. The human ovary and future of fertility assessment in the post-genome Era. Int J Mol Sci 2019; 20: 4209. 1-14. [DOI:10.3390/ijms20174209] [PMID] [PMCID]
8. Zafari Zangeneh F, Abdollahi A, Tavassoli P, Naghizadeh MM. The effect of cold stress on polycystic ovary syndrome in rat: before and during modeling. Arch Gynecol Obstet 2011; 284: 651-657. [DOI:10.1007/s00404-010-1711-y] [PMID]
9. Cerulli RA, Kritzer JA. Phosphotyrosine isosteres: Past, present and future. Org Biomol Chem 2020; 18: 583-605. [DOI:10.1039/C9OB01998G] [PMID] [PMCID]
10. Chaichun A, Arun S, Burawat J, Kanla P, Iamsaard S. Localization and identification of tyrosine phosphorylated proteins in adult Sprague-Dawley rat testis. Int J Morphol 2017; 35: 1322-1327. [DOI:10.4067/S0717-95022017000401322]
11. Sawatpanich T, Arun S, Tongpan S, Chaichun A, Sampannang A, Sukhorum W, et al. Localization and changes of tyrosine phosphorylated proteins and ß actin in epididymis of rats treated with valproic acid. Int J Morphol 2018; 36: 835-840. [DOI:10.4067/S0717-95022018000300835]
12. Tongpan S, Sukhorum W, Arun S, Sawatphanich T, Iamsaard S. Valproic acid changes the expression of tyrosinephosphorylated proteins in rat seminal vesicle. Andrologia 2019; 51: e13303. [DOI:10.1111/and.13303] [PMID]
13. Sukhorum W, Iamsaard S. Changes in testicular function proteins and sperm acrosome status in rats treated with valproic acid. Reprod Fertil Dev 2016; 29: 1585-1592. [DOI:10.1071/RD16205] [PMID]
14. Arun S, Burawat J, Yannasithinon S, Sukhorum W, Limpongsa A, Iamsaard S. Phyllanthus emblica leaf extract ameliorates testicular damage in rats with chronic stress. J Zhejiang Univ Sci 2018; 19: 948-959. [DOI:10.1631/jzus.B1800362] [PMID] [PMCID]
15. Sampannang A, Arun S, Burawat J, Sukhorum W, Iamsaard S. Expression of testicular phosphorylated proteins in types 1 and 2 diabetes mellitus in mice: An experimental study. Int J Reprod BioMed 2019; 17: 567-576. [DOI:10.18502/ijrm.v17i8.4822] [PMID] [PMCID]
16. Arun S, Burawat J, Sukhorum W, Sampannang A, Uabundit N, Iamsaard S. Changes of testicular phosphorylated proteins in response to restraint stress in male rats. J Zhejiang Univ Sci 2016; 17: 21-29. [DOI:10.1631/jzus.B1500174] [PMID] [PMCID]
17. Richards RG, Diaugustine RP, Petrusz P, Clarck GC, Sebastian J. Physiology Estradiol stimulates tyrosine phosphorylation of the insulin-like growth factor-1 receptor and insulin receptor substrate-I in the uterus. Proc Natl Acad Sci USA 1996; 93: 12002-12007. [DOI:10.1073/pnas.93.21.12002] [PMID] [PMCID]
18. homson M, Herbert JF, Thompson MB. Tyrosine phosphorylated proteins in the reproductive tract of the viviparous lizard Eulamprus tympanum and the oviparous lizard Lampropholis guichenoti. Comp Biochem Physiol B Biochem Mol Biol 2006; 144: 382-386. [DOI:10.1016/j.cbpb.2006.04.005] [PMID]
19. Bunsueb S. Presence and changes of tyrosine phosphorylated protein expression in female reproductive organs of chronic stress and polycystic ovary syndrome (PCOS) rats. [Master's thesis] Thailand: Faculty of Medicine, Khon Kaen University; 2019.
20. Petraglia F, Serour GI, Chapron Ch. The changing prevalence of infertility. Int J Gynecol Obstet 2013; 123: S4-S8. [DOI:10.1016/j.ijgo.2013.09.005] [PMID]
21. Sharma RK, Agarwal A. Role of reactive oxygen species in gynecologic diseases. Reprod Med Biol 2004; 3: 177-199. [DOI:10.1111/j.1447-0578.2004.00068.x] [PMID] [PMCID]
22. Breen KM, Oakley AE, Pytiak AV, Tilbrook AJ, Wagenmaker ER, Karsch FJ. Does cortisol acting via the type II glucocorticoid receptor mediate suppression of pulsatile luteinizing hormone secretion in response to psychosocial stress? Endocrinology 2007; 148: 1882-1890. [DOI:10.1210/en.2006-0973] [PMID]
23. Anastácio A, Rodriguez-Wallberg KA, Chardonnet S, Pionneau C, Fédérici Ch, Santos TA, et al. Protein profile of mouse ovarian follicles grown in vitro. Mol Hum Reprod 2017; 23: 827-841. [DOI:10.1093/molehr/gax056] [PMID] [PMCID]
24. Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod 2018; 33: 666-679. [DOI:10.1093/humrep/dey011] [PMID]
25. Bhat MS, Yajurvedi HN. Stress induced alterations in pre-pubertal ovarian follicular development in rat. Journal of Stress Physiology & Biochemistry 2011; 7: 51-68.
26. Wu LM, Liu YSh, Tong XH, Shen N, Jin RT, Han H, et al. Inhibition of follicular development induced by chronic unpredictable stress is associated with growth and differentiation factor 9 and gonadotropin in mice. Biol Reprod 2012; 86: 1-7. [DOI:10.1095/biolreprod.111.093468]
27. La Y, Tang J, Guo X, Zhang L, Gan Sh, Zhang X, et al. Proteomic analysis of sheep uterus reveals its role in prolificacy. J Proteomics 2020; 210: 103526. [DOI:10.1016/j.jprot.2019.103526] [PMID]
28. Maloney ShE, Khan FA, Chenier TS, Diel de Amorim M, Anthony Hayes M, Scholtz EL. A comparison of the uterine proteome of mares in oestrus and dioestrus. Reprod Domest Anim 2019; 54: 473-479. [DOI:10.1111/rda.13375] [PMID]
29. Soleilhavoup C, Riou C, Tsikis G, Labas V, Harichaux G, Kohnke P, et al. Proteomes of the female genital tract during the oestrous cycle. Mol Cell Proteomic 2016; 15: 93-108. [DOI:10.1074/mcp.M115.052332] [PMID] [PMCID]
30. Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction 2012; 144: 649-660. [DOI:10.1530/REP-12-0279] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb