Volume 20, Issue 10 (October 2022)                   IJRM 2022, 20(10): 807-818 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemian Nafchi H, Azizi Y, Halvaei I. The role of growth factors in human sperm parameters: A review of in vitro studies. IJRM 2022; 20 (10) :807-818
URL: http://ijrm.ssu.ac.ir/article-1-2372-en.html
1- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
2- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran. Department of Physiology, Iran University of Medical Sciences, Tehran, Iran.
3- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. , ihalvaei@modares.ac.ir
Abstract:   (323 Views)
In vitro sperm preparation/incubation and cryopreservation are associated with oxidative stress as the main cause of sperm damage, and different strategies are used to improve sperm quality in in vitro conditions to treat male infertility. Growth factors (GFs) are biological molecules that play different roles in various cellular processes such as growth, proliferation, and differentiation. Many studies have shown that GFs and their receptors are expressed in the male reproductive system. In vitro supplementation of GFs to improve sperm parameters has yielded useful results. There are many studies on the effects of GFs on sperm quality improvement and subsequent assisted reproductive technology results. Hence, this study will review the in vitro results of various GFs including brain-derived neurotrophic factor, nerve growth factor, fibroblast growth factor, insulin-like growth factor I, and vascular endothelial growth factor to improve sperm quality.
Full-Text [PDF 297 kb]   (294 Downloads) |   |   Full-Text (HTML)  (25 Views)  
Type of Study: Review Article | Subject: Reproductive Andrology

References
1. Katz DJ, Teloken P, Shoshany O. Male infertility: The other side of the equation. Aust Fam Physician 2017; 46: 641-646.
2. Bui AD, Sharma R, Henkel R, Agarwal A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 2018; 508: e13012. [DOI:10.1111/and.13012] [PMID]
5. Agarwal A, Virk G, Ong Ch, Du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health 2014; 32: 1-17. [DOI:10.5534/wjmh.2014.32.1.1] [PMID] [PMCID]
8. Lewis SEM, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 2005; 322: 33-41. [DOI:10.1007/s00441-005-1097-5] [PMID]
11. Agarwal A, Durairajanayagam D, Du Plessis SS. Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reprod Biol Endocrinol 2014; 12: 112. [DOI:10.1186/1477-7827-12-112] [PMID] [PMCID]
14. Ankri R, Friedman H, Savion N, Kotev‐Emeth Sh, Breitbart H, Lubart R. Visible light induces no formation in sperm and endothelial cells. Lasers Surg Med 2010; 42: 348-352. [DOI:10.1002/lsm.20849] [PMID]
17. Hatef B, Taromchi A, Nejatbakhsh R, Farrokhi A, Shokri S. Supplementation of freezing media with stromal cell-derived factor-1α preserves human sperm from cryodamage. Cryobiology 2017; 79: 37-42. [DOI:10.1016/j.cryobiol.2017.09.004] [PMID]
20. Bahmyari R, Zare M, Sharma R, Agarwal A, Halvaei I. The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freeze‐thaw process: A systematic review and meta‐analysis. Andrologia 2020; 52: e13514. [DOI:10.1111/and.13514] [PMID]
23. Scott L, Smith S. Human sperm motility-enhancing agents have detrimental effects on mouse oocytes and embryos. Fertil Steril 1995; 63: 166-175. [DOI:10.1016/S0015-0282(16)57313-0] [PMID]
26. Asimakopoulos B, Tiptiri‐Kourpeti A, Metallinou Ch. IGF‐I and NGFβ enhance in vitro progressive motility and vitality of human spermatozoa. Reprod Med Biol 2021; 20: 361-367. [DOI:10.1002/rmb2.12393] [PMID] [PMCID]
29. Cotton LM, O'Bryan MK, Hinton BT. Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 2008; 29: 193-216. [DOI:10.1210/er.2007-0028] [PMID] [PMCID]
32. Li C, Sun Y, Yi K, Ma Y, Zhang W, Zhou X. Detection of nerve growth factor (NGF) and its specific receptor (TrkA) in ejaculated bovine sperm, and the effects of NGF on sperm function. Theriogenology 2010; 74: 1615-1622. [DOI:10.1016/j.theriogenology.2010.06.033] [PMID]
35. Najafi A, Asadi E, Moawad AR, Mikaeili S, Amidi F, Adutwum E, et al. Supplementation of freezing and thawing media with brain-derived neurotrophic factor protects human sperm from freeze-thaw-induced damage. Fertil Steril 2016; 106: 1658-1665. [DOI:10.1016/j.fertnstert.2016.09.004] [PMID]
38. Garbarino Azúa DJ, Saucedo L, Giordana S, Magri M, Buffone MG, Neuspiller F, et al. Fibroblast growth factor 2 (FGF 2) is present in human spermatozoa and is related with sperm motility. The use of recombinant FGF 2 to improve motile sperm recovery. Andrology 2017; 5: 990-998. [DOI:10.1111/andr.12398] [PMID]
41. Zheng L, Li Ch, Sun Y, Liu Zh, Zhou X. Expression of brain-derived neurotrophic factor in mature spermatozoa from fertile and infertile men. Clin Chim Acta 2011; 412: 44-47. [DOI:10.1016/j.cca.2010.08.045] [PMID]
44. Russo MA, Giustizieri ML, Favale A, Fantini MC, Campagnolo L, Konda D, et al. Spatiotemporal patterns of expression of neurotrophins and neurotrophin receptors in mice suggest functional roles in testicular and epididymal morphogenesis. Biol Reprod 1999; 61: 1123-1132. [DOI:10.1095/biolreprod61.4.1123] [PMID]
47. Heaton MB, Paiva M, Siler‐Marsiglio K. Ethanol influences on Bax translocation, mitochondrial membrane potential, and reactive oxygen species generation are modulated by vitamin E and brain‐derived neurotrophic factor. Alcohol Clin Exp Res 2011; 35: 1122-1133. [DOI:10.1111/j.1530-0277.2011.01445.x] [PMID] [PMCID]
50. Najafi A, Amidi F, Sedighi Gilani MA, Moawad AR, Asadi E, Khanlarkhni N, et al. Effect of brain‐derived neurotrophic factor on sperm function, oxidative stress and membrane integrity in human. Andrologia 2017; 49: 7881979. [DOI:10.1111/and.12601] [PMID]
53. Safari H, Khanlarkhani N, Sobhani A, Najafi A, Amidi F. Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men. Hum Fertil 2018; 21: 248-254. [DOI:10.1080/14647273.2017.1346301] [PMID]
56. Lin K, Ding X-F, Shi C-G, Zeng D, QuZong SL, Liu Sh-H, et al. Nerve growth factor promotes human sperm motility in vitro by increasing the movement distance and the number of A grade spermatozoa. Andrologia 2015; 47: 1041-1046. [DOI:10.1111/and.12375] [PMID]
59. Saucedo L, Buffa GN, Rosso M, Guillardoy T, Góngora A, Munuce MJ, et al. Fibroblast growth factor receptors (FGFRs) in human sperm: Expression, functionality and involvement in motility regulation. PloS One 2015; 10: e0127297. [DOI:10.1371/journal.pone.0127297] [PMID] [PMCID]
62. Iyibozkurt AC, Balcik P, Bulgurcuoglu S, Arslan BK, Attar R, Attar E. Effect of vascular endothelial growth factor on sperm motility and survival. Reprod Biomed Online 2009; 19: 784-788. [DOI:10.1016/j.rbmo.2009.09.019] [PMID]
65. Bader R, Ibrahim J, Moussa M, Mourad A, Azoury J, Azoury J, et al. In vitro effect of autologous platelet‐rich plasma on H2O2‐induced oxidative stress in human spermatozoa. Andrology 2020; 8: 191-200. [DOI:10.1111/andr.12648] [PMID]
68. Saeednia S, Bahadoran H, Amidi F, Asadi MH, Naji M, Fallahi P, et al. Nerve growth factor in human semen: Effect of nerve growth factor on the normozoospermic men during cryopreservation process. Iran J Basic Med Sci 2015; 18: 292-299.
69. Saeednia S, Shabani Nashtaei M, Bahadoran H, Aleyasin A, Amidi F. Effect of nerve growth factor on sperm quality in asthenozoosprmic men during cryopreservation. Reprod Biol Endocrinol 2016; 14: 29. [DOI:10.1186/s12958-016-0163-z] [PMID] [PMCID]
72. Yan B, Zhang Y, Tian Sh, Hu R, Wu B. Effect of autologous platelet-rich plasma on human sperm quality during cryopreservation. Cryobiology 2021; 98: 12-16. [DOI:10.1016/j.cryobiol.2021.01.009] [PMID]
75. Henkel R, Sandhu IS, Agarwal A. The excessive use of antioxidant therapy: A possible cause of male infertility? Andrologia 2019; 51: e13162. [DOI:10.1111/and.13162] [PMID]
78. Tesarik J. Towards personalized antioxidant use in female infertility: Need for more molecular and clinical studies. Biomedicines 2021; 9: 1933. [DOI:10.3390/biomedicines9121933] [PMID] [PMCID]
81. Kowsar R, Ronasi Sh, Sadeghi N, Sadeghi Kh, Miyamoto A. Epidermal growth factor alleviates the negative impact of urea on frozen-thawed bovine sperm, but the subsequent developmental competence is compromised. Sci Rep 2021; 11: 4687. [DOI:10.1038/s41598-021-83929-z] [PMID] [PMCID]
84. Tongrueng S, Vongpralub Th, Srimooltho W, Phasuk Y. Transforming growth factor beta1 in porcine seminal plasma on characteristic of sperm and reproductive efficiency in Sows. Sci Tech Asia 2021; 26: 216-223.
85. Brown LF, Yeo KT, Berse B, Morgentaler A, Dvorak HF, Rosen S. Vascular permeability factor (vascular endothelial growth factor) is strongly expressed in the normal male genital tract and is present in substantial quantities in semen. J Urol 1995; 154: 576-579. https://doi.org/10.1097/00005392-199508000-00073 [DOI:10.1016/S0022-5347(01)67114-3] [PMID]
89. Menezo Y, Guerin P. The mammalian oviduct: Biochemistry and physiology. Eur J Obstet Gynecol Reprod Biol 1997; 73: 99-104. [DOI:10.1016/S0301-2115(97)02729-2] [PMID]
92. Li C, Li C, Zhu X, Wang C, Liu Zh, Li W, et al. The expression and putative role of brain-derived neurotrophic factor and its receptor in bovine sperm. Theriogenology 2012; 77: 636-643. [DOI:10.1016/j.theriogenology.2011.09.003] [PMID]
95. Valvassori SS, Arent CO, Steckert AV, Varela RB, Jornada LK, Tonin PT, et al. Intracerebral administration of BDNF protects rat brain against oxidative stress induced by ouabain in an animal model of mania. Mol Neurobiol 2015; 52: 353-362. [DOI:10.1007/s12035-014-8873-8] [PMID]
98. Wu Ch-L, Chen Sh-D, Yin J-H, Hwang Ch-Sh, Yang DI. Nuclear factor-kappaB-dependent sestrin2 induction mediates the antioxidant effects of BDNF against mitochondrial inhibition in rat cortical neurons. Mol Neurobiol 2016; 53: 4126-4142. [DOI:10.1007/s12035-015-9357-1] [PMID]
101. Takeda K, Kermani P, Anastasia A, Obinata Y, Hempstead BL, Kurihara H. BDNF protects human vascular endothelial cells from TNFα-induced apoptosis. Biochem Cell Biol 2013; 91: 341-349. [DOI:10.1139/bcb-2013-0005] [PMID]
104. Chen A, Xiong L-J, Tong Y, Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biol Reprod 2013; 1: 167-176. [DOI:10.3892/br.2012.48] [PMID] [PMCID]
107. Gallardo Bolanos JM, Balao da Silva CM, Martin Munoz P, Morillo Rodriguez A, Plaza Davila M, Rodriguez-Martinez H, et al. Phosphorylated AKT preserves stallion sperm viability and motility by inhibiting caspases 3 and 7. Reproduction 2014; 148: 221-235. [DOI:10.1530/REP-13-0191] [PMID]
110. Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J 2011; 436: 687-698. [DOI:10.1042/BJ20110114] [PMID]
113. Shi C-G, Lin K, Xu X-B, Zhang Sh-Ch, Wang N, Fan M. Evidence for the involvement of NGF in human sperm motility. J Biomed Sci Eng 2012; 5: 534-541. [DOI:10.4236/jbise.2012.59066]
115. Berry A, Bindocci E, Alleva E. NGF, brain and behavioral plasticity. Neural Plasticity 2012; 2012: 784040. [DOI:10.1155/2012/784040] [PMID] [PMCID]
118. Castellini C, Mattioli S, Dal Bosco A, Cartoni Mancinelli A, Rende M, Stabile AM, et al. Role of NGF on sperm traits: A review. Theriogenology 2020; 150: 210-214. [DOI:10.1016/j.theriogenology.2020.01.039] [PMID]
121. Ayer-LeLievre C, Olson L, Ebendal T, Hallböök F, Persson H. Nerve growth factor mRNA and protein in the testis and epididymis of mouse and rat. Proc Natl Acad Sci 1988; 85: 2628-2632. [DOI:10.1073/pnas.85.8.2628] [PMID] [PMCID]
124. Seidl K, Buchberger A, Erck C. Expression of nerve growth factor and neurotrophin receptors in testicular cells suggest novel roles for neurotrophins outside the nervous system. Reprod Fertil Dev 1996; 8: 1075-1087. [DOI:10.1071/RD9961075] [PMID]
127. Jin W, Arai KY, Shimizu K, Kojima C, Itoh M, Watanabe G, et al. Cellular localization of NGF and its receptors trkA and p75LNGFR in male reproductive organs of the Japanese monkey, Macaca fuscata fuscata. Endocrine 2006; 29: 155-160. [DOI:10.1385/ENDO:29:1:155] [PMID]
130. Li ChM, Watanabe G, Weng Q, Jin W, Furuta Ch, Suzuki AK, et al. Expression of nerve growth factor (NGF), and its receptors TrkA and p75 in the reproductive organs of the adult male rats. Zool Sci 2005; 22: 933-937. [DOI:10.2108/zsj.22.933] [PMID]
133. Weng Q, Shi ZhQ, Tukada J, Watanabe G, Taya K. Immunodetection of NGF, trkA, p75 and inhibin α-subunit in interstitial cells of golden hamsters treated with hCG. J Reprod Dev 2009; 55: 622-628. [DOI:10.1262/jrd.20208] [PMID]
136. Robinson LLL, Townsend J, Anderson RA. The human fetal testis is a site of expression of neurotrophins and their receptors: Regulation of the germ cell and peritubular cell population. J Clin Endocrinol Metab 2003; 88: 3943-3951. [DOI:10.1210/jc.2003-030196] [PMID]
139. Müller D, Davidoff MS, Bargheer O, Paust H-J, Pusch W, Koeva Y, et al. The expression of neurotrophins and their receptors in the prenatal and adult human testis: Evidence for functions in Leydig cells. Histochem Cell Biol 2006; 126: 199-211. [DOI:10.1007/s00418-006-0155-8] [PMID]
142. Li Ch, Zheng L, Wang Ch, Zhou X. Absence of nerve growth factor and comparison of tyrosine kinase receptor A levels in mature spermatozoa from oligoasthenozoospermic, asthenozoospermic and fertile men. Clin Chim Acta 2010; 411: 1482-1486. [DOI:10.1016/j.cca.2010.06.002] [PMID]
145. Stoleru B, Popescu AM, Tache DE, Neamtu OM, Emami G, Tataranu LG, et al. Tropomyosin-receptor-kinases signaling in the nervous system. Maedica 2013; 8: 43-48.
146. Hirata Y, Meguro T, Kiuchi K. Differential effect of nerve growth factor on dopaminergic neurotoxin‐induced apoptosis. J Neurochem 2006; 99: 416-425. [DOI:10.1111/j.1471-4159.2006.04006.x] [PMID]
149. Nguyen TLX, Kim ChK, Cho J-H, Lee K-H, Ahn J-Y. Neuroprotection signaling pathway of nerve growth factor and brain-derived neurotrophic factor against staurosporine induced apoptosis in hippocampal H19-7 cells. Exp Mol Med 2010; 42: 583-595. [DOI:10.3858/emm.2010.42.8.060] [PMID] [PMCID]
152. Sørensen V, Nilsen T, Wiȩdłocha A. Functional diversity of FGF‐2 isoforms by intracellular sorting. Bioessays 2006; 28: 504-514. [DOI:10.1002/bies.20405] [PMID]
155. Li Sh, Zhao Y, Nie M, Ma W, Wang X, Ji W, et al. Clinical characteristics and spermatogenesis in patients with congenital hypogonadotropic hypogonadism caused by FGFR1 mutations. Int J Endocrinol 2020; 2020: 8873532. [DOI:10.1155/2020/8873532] [PMID] [PMCID]
158. Eswarakumar V, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16: 139-149. [DOI:10.1016/j.cytogfr.2005.01.001] [PMID]
161. Luconi M, Barni T, Vannelli GB, Krausz C, Marra F, Benedetti PA, et al. Extracellular signal-regulated kinases modulate capacitation of human spermatozoa. Biol Reprod 1998; 58: 1476-1489. [DOI:10.1095/biolreprod58.6.1476] [PMID]
164. de Lamirande E, O'Flaherty C. Sperm activation: Role of reactive oxygen species and kinases. Biochim Biophys Acta 2008; 1784: 106-115. [DOI:10.1016/j.bbapap.2007.08.024] [PMID]
167. Obermair A, Obruca A, Pöhl M, Kaider A, Vales A, Leodolter S, et al. Vascular endothelial growth factor and its receptors in male fertility. Fertil Steril 1999; 72: 269-275. [DOI:10.1016/S0015-0282(99)00234-4] [PMID]
170. Tohidnezhad M, Wruck Ch-J, Slowik A, Kweider N, Beckmann R, Bayer A, et al. Role of platelet-released growth factors in detoxification of reactive oxygen species in osteoblasts. Bone 2014; 65: 9-17. [DOI:10.1016/j.bone.2014.04.029] [PMID]
173. Wright GL, Maroulakou IG, Eldridge J, Liby TL, Sridharan V, Tsichlis PN, et al. VEGF stimulation of mitochondrial biogenesis: Requirement of AKT3 kinase. FASEB J 2008; 22: 3264-3275. [DOI:10.1096/fj.08-106468] [PMID] [PMCID]
176. Chong ZZ, Maiese K. Targeting WNT, protein kinase B, and mitochondrial membrane integrity to foster cellular survival in the nervous system. Histol Histopathol 2004; 19: 495-504.
177. Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 2012; 10: 224. [DOI:10.1186/1479-5876-10-224] [PMID] [PMCID]
180. D'Ercole AJ, Applewhite GT, Underwood LE. Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol 1980; 75: 315-328. [DOI:10.1016/0012-1606(80)90166-9] [PMID]
183. Fu L, Yuen KCJ, Tint AN, Hoffman AR, Bongso AT, Lee KO. Association of decreased sperm motility and increased seminal plasma IGF-I, IGF-II, IGFBP-2, and PSA levels in infertile men. Endocrine 2021; 743: 698-706. [DOI:10.1007/s12020-021-02823-w] [PMID]
186. Glander HJ, Kratzsch J, Weisbrich C, Birkenmeier GJHR. Andrology: Insulin-like growth factor-I and α2-macroglobulin in seminal plasma correlate with semen quality. Hum Reprod 1996; 11: 2454-2460. [DOI:10.1093/oxfordjournals.humrep.a019136] [PMID]
189. Zhou J, Bondy C. Anatomy of the insulin-like growth factor system in the human testis. Fertil Steril 1993; 60: 897-904. [DOI:10.1016/S0015-0282(16)56294-3] [PMID]
192. Sánchez-Luengo S, Fernández PJ, Romeu A. Insulin growth factors may be implicated in human sperm capacitation. Fertil Steril 2005; 83: 1064-1066. [DOI:10.1016/j.fertnstert.2004.12.003] [PMID]
195. Sortino MA, Canonico PLJE. Neuroprotective effect of insulin-like growth factor I in immortalized hypothalamic cells. Endocrinology 1996; 137: 1418-1422. [DOI:10.1210/endo.137.4.8625919] [PMID]
198. Lubkowska A, Dolegowska B, Banfi G. Growth factor content in PRP and their applicability in medicine. J Biol Regul Homeost Agents 2012; 26 (Suppl.): S3- S22.
199. Perumal P. Effect of superoxide dismutase on semen parameters and antioxidant enzyme activities of liquid stored (5 C) Mithun (Bos frontalis) semen. J Anim 2014; 2014: 821954. [DOI:10.1155/2014/821954]
201. Magalon J, Bausset O, Serratrice N, Giraudo L, Aboudou H, Veran J, et al. Characterization and comparison of 5 platelet-rich plasma preparations in a single-donor model. Arthroscopy 2014; 30: 629-638. [DOI:10.1016/j.arthro.2014.02.020] [PMID]
204. Laškaj R, Dodig S, Čepelak I, Kuzman I. Superoxide dismutase, copper and zinc concentrations in platelet-rich plasma of pneumonia patients. Ann Clin Biochem 2009; 46: 123-128. [DOI:10.1258/acb.2008.008178] [PMID]
207. Nilsson LL, Hornstrup MB, Perin TL, Lindhard A, Funck T, Bjerrum PJ, et al. Soluble HLA-G and TGF-β in couples attending assisted reproduction: A possible role of TGF-β isoforms in semen? J Reprod Immunol 2020; 137: 102857. [DOI:10.1016/j.jri.2019.102857] [PMID]
210. Susilowati S, Triana IN, Malik A. The effects of insulin-like growth factor I (IGF-I) complex from seminal plasma on capacitation, membrane integrity and DNA fragmentation in goat spermatozoa. Asian Pac J Reprod 2015; 4: 208-211. [DOI:10.1016/j.apjr.2015.06.003]
212. Li Y, Geng Y-J. A potential role for insulin-like growth factor signaling in induction of pluripotent stem cell formation. Growth Horm IGF Res 2010; 20: 391-398. [DOI:10.1016/j.ghir.2010.09.005] [PMID]
215. Ni W, Pan C, Pan Q, Fei Q, Huang X, Zhang Ch. Methylation levels of IGF2 and KCNQ1 in spermatozoa from infertile men are associated with sperm DNA damage. Andrologia 2019; 51: e13239. [DOI:10.1111/and.13239] [PMID]
218. Zhao J, Dong X, Hu X, Long Z, Wang L, Liu Q, et al. Zinc levels in seminal plasma and their correlation with male infertility: A systematic review and meta-analysis. Sci Rep 2016; 6: 22386. [DOI:10.1038/srep22386] [PMID] [PMCID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb