Volume 21, Issue 11 (November 2023)                   IJRM 2023, 21(11): 909-920 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farshid P, Mirnia K, Rezaei P, Maserat E, Samad-Soltani T. Developing a model to predict neonatal respiratory distress syndrome and affecting factors using data mining: A cross-sectional study. IJRM 2023; 21 (11) :909-920
URL: http://ijrm.ir/article-1-2751-en.html
1- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
2- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
3- Department of Medical Informatics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
4- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran. , samadsoltani@tbzmed.ac.ir
Abstract:   (501 Views)
Background: One of the major challenges that hospitals and clinicians face is the early identification of newborns at risk for adverse events. One of them is neonatal respiratory distress syndrome (RDS). RDS is the widest spared respiratory disorder in immature newborns and the main source of death among them. Machine learning has been broadly accepted and used in various scopes to analyze medical information and is very useful in the early detection of RDS.
Objective: This study aimed to develop a model to predict neonatal RDS and affecting factors using data mining.
Materials and Methods: The original dataset in this cross-sectional study was extracted from the medical records of newborns diagnosed with RDS from July 2017-July 2018 in Alzahra hospital, Tabriz, Iran. This data includes information about 1469 neonates, and their mothers information. The data were preprocessed and applied to expand the classification model using machine learning techniques such as support vector machine, Naïve Bayes, classification tree, random forest, CN2 rule induction, and neural network, for prediction of RDS episodes. The study compares models according to their accuracy.
Results: Among the obtained results, an accuracy of 0.815, sensitivity of 0.802, specificity of 0.812, and area under the curve of 0.843 was the best output using random forest.
Conclusion: The findings of our study proved that new approaches, such as data mining, may support medical decisions, improving diagnosis in neonatal RDS. The feasibility of using a random forest in neonatal RDS prediction would offer the possibility to decrease postpartum complications of neonatal care.
Full-Text [PDF 838 kb]   (415 Downloads) |   |   Full-Text (HTML)  (105 Views)  
Type of Study: Original Article | Subject: Perinatology

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb