1. Deng T, Liao X, Zhu S. Recent advances in treatment of recurrent spontaneous abortion. Obstet Gynecol Surv 2022; 77: 355-366. [
DOI:10.1097/OGX.0000000000001033] [
PMID] [
PMCID]
2. ESHRE Guideline Group on RPL, Bender Atik R, Christiansen OB, Elson J, Kolte AM, Lewis S, et al. ESHRE guideline: Recurrent pregnancy loss. Hum Reprod Open 2018; 2018: hoy004. [
DOI:10.1093/hropen/hoy004] [
PMID] [
PMCID]
3. Dimitriadis E, Menkhorst E, Saito S, Kutteh WH, Brosens JJ. Recurrent pregnancy loss. Nat Rev Dis Primers 2020; 6: 98. [
DOI:10.1038/s41572-020-00228-z] [
PMID]
4. Tomkiewicz J, Darmochwał-Kolarz D. The diagnostics and treatment of recurrent pregnancy loss. J Clin Med 2023; 12: 4768. [
DOI:10.3390/jcm12144768] [
PMID] [
PMCID]
5. Dai X, Shen L. Advances and trends in omics technology development. Front Med 2022; 9: 911861. [
DOI:10.3389/fmed.2022.911861] [
PMID] [
PMCID]
6. Wei Y, Deng Z, Yin T. Are we closer to robust predictors of recurrent pregnancy loss by means of integrating different types of omics data? Expert Rev Mol Diagn 2024; 24: 561-563. [
DOI:10.1080/14737159.2024.2375235] [
PMID]
7. Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A. Transcriptome profiling in human diseases: New advances and perspectives. Int J Mol Sci 2017; 18: 1652. [
DOI:10.3390/ijms18081652] [
PMID] [
PMCID]
8. Bhardwaj C, Srivastava P. Identification of hub genes in placental dysfunction and recurrent pregnancy loss through transcriptome data mining: A meta-analysis. Taiwan J Obstet Gynecol 2024; 63: 297-306. [
DOI:10.1016/j.tjog.2024.01.035] [
PMID]
9. Yu M, Du G, Xu Q, Huang Z, Huang X, Qin Y, et al. An integrated analysis of the DNA methylome and transcriptome identified CREB5 as a novel risk gene contributing to recurrent pregnancy loss. EBioMedicine 2018; 35: 334-344. [
DOI:10.1016/j.ebiom.2018.07.042] [
PMID] [
PMCID]
10. Jin M-Q, Huang B-Y, Lu D-Y, Huang J-Y, Ma L. Identification and verification of feature biomarkers associated with immune cells in recurrent pregnancy loss. Eur Rev Med Pharmacol Sci 2024; 28: 556-570.
11. Reiisi S, Ahmadi K. Bioinformatics analysis of a disease-specific lncRNA-miRNA-mRNA regulatory network in recurrent spontaneous abortion (RSA). Arch Gynecol Obstet 2024; 309: 1609-1620. [
DOI:10.1007/s00404-023-07356-3] [
PMID]
12. Wei C, Wei Y, Cheng J, Tan X, Zhou Z, Lin S, et al. Identification and verification of diagnostic biomarkers in recurrent pregnancy loss via machine learning algorithm and WGCNA. Front Immunol 2023; 14: 1241816. [
DOI:10.3389/fimmu.2023.1241816] [
PMID] [
PMCID]
13. Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol 2016; 1418: 93-110. [
DOI:10.1007/978-1-4939-3578-9_5] [
PMID] [
PMCID]
14. Clough E, Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al. NCBI GEO: Archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res 2024; 52: D138-D144. [
DOI:10.1093/nar/gkad965] [
PMID] [
PMCID]
15. Kotlov N, Shaposhnikov K, Tazearslan C, Chasse M, Baisangurov A, Podsvirova S, et al. Procrustes is a machine-learning approach that removes cross-platform batch effects from clinical RNA sequencing data. Commun Biol 2024; 7: 392. [
DOI:10.1038/s42003-024-06020-z] [
PMID] [
PMCID]
16. Papaccio F, Garcia-Mico B, Gimeno-Valiente F, Cabeza-Segura M, Gambardella V, Gutierrez-Bravo MF, et al. Proteotranscriptomic analysis of advanced colorectal cancer patient derived organoids for drug sensitivity prediction. J Exp Clin Cancer Res 2023; 42: 8. [
DOI:10.1186/s13046-022-02591-z] [
PMID] [
PMCID]
17. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550. [
DOI:10.1186/s13059-014-0550-8] [
PMID] [
PMCID]
18. Wynn EA, Vestal BE, Fingerlin TE, Moore CM. A comparison of methods for multiple degree of freedom testing in repeated measures RNA-sequencing experiments. BMC Med Res Methodol 2022; 22: 153. [
DOI:10.1186/s12874-022-01615-8] [
PMID] [
PMCID]
19. Storey JD. False discovery rate. In: Lovric M. International encyclopedia of statistical science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. [
DOI:10.1007/978-3-642-04898-2_248]
20. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49: D605-D612. [
DOI:10.1093/nar/gkaa1074] [
PMID] [
PMCID]
21. Szklarczyk D, Nastou K, Koutrouli M, Kirsch R, Mehryary F, Hachilif R, et al. The STRING database in 2025: Protein networks with directionality of regulation. Nucleic Acids Res 2025; 53: D730-D737. [
DOI:10.1093/nar/gkae1113] [
PMID] [
PMCID]
22. Doncheva NT, Morris JH, Holze H, Kirsch R, Nastou KC, Cuesta-Astroz Y, et al. Cytoscape stringApp 2.0: Analysis and visualization of heterogeneous biological networks. J Proteome Res 2023; 22: 637-646. [
DOI:10.1021/acs.jproteome.2c00651] [
PMID] [
PMCID]
23. Buzzao D, Steininger L, Guala D, Sonnhammer ELL. The FunCoup Cytoscape App: Multi-species network analysis and visualization. Bioinformatics 2024; 41: btae739. [
DOI:10.1093/bioinformatics/btae739] [
PMID] [
PMCID]
24. Wen X, Dong P, Liu J, Wang S-J, Li J. Role of immune inflammation in recurrent spontaneous abortions. J Inflamm Res 2024; 17: 9407-9422. [
DOI:10.2147/JIR.S488638] [
PMID] [
PMCID]
25. Andreescu M, Tanase A, Andreescu B, Moldovan C. A review of immunological evaluation of patients with recurrent spontaneous abortion (RSA). Int J Mol Sci 2025; 26: 785. [
DOI:10.3390/ijms26020785] [
PMID] [
PMCID]
26. Zhang X, Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol 2021; 12: 728291. [
DOI:10.3389/fimmu.2021.728291] [
PMID] [
PMCID]
27. Dhawan G, Mani I, Vasdev K. Epigenetic remodeling of Delta FosB protein: Its role in regulation of stress. Cell Cellular Lif Sci J 2018; 3: 000121. [
DOI:10.23880/cclsj-16000121]
28. Yin M, Srinivas N, Lei KC, Murad M, Ugurel S, Livingstone E, et al. Crosstalk between CLL and cutaneous T-cell lymphoma: MIF-CD74 axis and dysregulated inflammatory signaling. EJC Skin Cancer 2025; 3: 100735. [
DOI:10.1016/j.ejcskn.2025.100735]
29. Sugitani N, Henkel M, Partyka J, Applegate A, Kemp F, Byersdorfer CA, et al. Nuclear receptor 4A1 is critical for neutrophil-dependent pulmonary immunity to Klebsiella pneumoniae infection. Front Immunol 2025; 16: 1558252. [
DOI:10.3389/fimmu.2025.1558252] [
PMID] [
PMCID]
30. Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev 2005; 208: 126-140. [
DOI:10.1111/j.0105-2896.2005.00332.x] [
PMID]
31. Stanisavljević Ilić A, Filipović D. Mapping of c-Fos expression in rat brain sub/regions following chronic social isolation: Effective treatments of olanzapine, clozapine or fluoxetine. Pharmaceuticals 2024; 17: 1527. [
DOI:10.3390/ph17111527] [
PMID] [
PMCID]
32. Jeanneteau F, Barrère C, Vos M, De Vries CJM, Rouillard C, Levesque D, et al. The stress-induced transcription factor NR4A1 adjusts mitochondrial function and synapse number in prefrontal cortex. J Neurosci 2018; 38: 1335-1350. [
DOI:10.1523/JNEUROSCI.2793-17.2017] [
PMID] [
PMCID]
33. Adkins AM, Colby EM, Kim W-K, Wellman LL, Sanford LD. Stressor control and regional inflammatory responses in the brain: Regulation by the basolateral amygdala. J Neuroinflammation 2023; 20: 128. [
DOI:10.1186/s12974-023-02813-x] [
PMID] [
PMCID]
34. Chen Y-X, Zhang Q-Q, Ge C, Yang J. Identification of hub genes, signaling pathways and immune infiltration of recurrent spontaneous abortion based on bioinformatics analysis with clinical verification. Taiwan J Obstet Gynecol 2022; 61: 1027-1036. [
DOI:10.1016/j.tjog.2022.06.014] [
PMID]
35. Zhao Q-Y, Li Q-H, Fu Y-Y, Ren C-E, Jiang A-F, Meng Y-H. Decidual macrophages in recurrent spontaneous abortion. Front Immunol 2022; 13: 994888. [
DOI:10.3389/fimmu.2022.994888] [
PMID] [
PMCID]
36. Li D, Zheng L, Zhao D, Xu Y, Wang Y. The role of immune cells in recurrent spontaneous abortion. Reprod Sci 2021; 28: 3303-3315. [
DOI:10.1007/s43032-021-00599-y] [
PMID] [
PMCID]