1. Hasanpoor-Azghady SB, Simbar M, Vedadhir AA, Azin SA, Amiri-Farahani L. The social construction of infertility among iranian infertile women: A qualitative study. J Reprod Infertil 2019; 20: 178-190.
2. Araya BM, Aldersey HM, Camara S, Alemu K, Dyer S, Velez MP. The varying estimation of infertility in Ethiopia: The need for a comprehensive definition. BMC Womens Health 2024; 24: 280-291. [
DOI:10.1186/s12905-024-03118-8] [
PMID] [
PMCID]
3. Seyedi SS, Hosseini A, Rabiei R, Asadi F, Moghaddasi H. Infertility information system with an approach to data architecture: A systematic review. Am J Biomed Sci Res 2019; 5: 254-261. [
DOI:10.34297/AJBSR.2019.05.000922]
4. Taylor HS, Pal L, Sell E. Speroff's clinical gynecologic endocrinology and infertility. Philadelphia: Lippincott Williams & Wilkins; 2019.
5. Direkvand Moghaddam A, Delpisheh A, Sayehmiri K. [An investigation of the worldwide prevalence of infertility as a systematic review]. Qom Univ Med Sci J 2016; 10: 76-87. (In Persian)
6. Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem 2018; 62: 2-10. [
DOI:10.1016/j.clinbiochem.2018.03.012] [
PMID]
7. Camacho J, Zanoletti-Mannello M, Landis-Lewis Z, Kane-Gill SL, Boyce RD. A conceptual framework to study the implementation of clinical decision support systems (BEAR): Literature review and concept mapping. J Med Internet Res 2020; 22: e18388. [
DOI:10.2196/18388] [
PMID] [
PMCID]
8. Saei Ghare Naz M, Ozgoli G, Sayehmiri K. Prevalence of infertility in Iran: A systematic review and meta-analysis. Urol J 2020; 17: 338-345. [
DOI:10.18502/ijrm.v17i8.4818] [
PMID] [
PMCID]
9. Zhang Q, Liang X, Chen Z. A review of artificial intelligence applications in in vitro fertilization. J Assist Reprod Genet 2025; 42: 3-14. [
DOI:10.1007/s10815-024-03284-6] [
PMID]
10. Rabiei R, Ayyoubzadeh SM, Sohrabei S, Esmaeili M, Atashi A. Prediction of breast cancer using machine learning approaches. J Biomed Phys Eng 2022; 12: 297-308. [
DOI:10.31661/jbpe.v0i0.2109-1403] [
PMID] [
PMCID]
11. Wang R, Pan W, Jin L, Li Y, Geng Y, Gao C, et al. Artificial intelligence in reproductive medicine. Reproduction 2019; 158: R139-R154. [
DOI:10.1530/REP-18-0523] [
PMID] [
PMCID]
12. Rezayi S, Nilashi M, Esmaeeli E, Ramezanghorbani N, Arji G, Ahmadi H, et al. A scoping and bibliometric review of deep learning techniques in breast cancer imaging: Mapping the landscape and future directions. Neural Comput Appl 2025; 37: 17759-17782. [
DOI:10.1007/s00521-025-11215-4]
13. Khosravi M, Zare Z, Mojtabaeian SM, Izadi R. Artificial intelligence and decision-making in healthcare: A thematic analysis of a systematic review of reviews. Health Serv Res Manag Epidemiol 2024; 11: 23333928241234863. [
DOI:10.1177/23333928241234863] [
PMID] [
PMCID]
14. Chen Z, Liang N, Zhang H, Li H, Yang Y, Zong X, et al. Harnessing the power of clinical decision support systems: Challenges and opportunities. Open Heart 2023; 10: e002432. [
DOI:10.1136/openhrt-2023-002432] [
PMID] [
PMCID]
15. Tehrani FT, Abbasi S. Continuous positive airway pressure treatment of premature infants: Application of a computerized decision support system. Comput Biol Med 2015; 62: 136-140. [
DOI:10.1016/j.compbiomed.2015.04.007] [
PMID]
16. Joshi M, Ashrafian H, Arora S, Khan S, Cooke G, Darzi A. Digital alerting and outcomes in patients with sepsis: Systematic review and meta-analysis. J Med Internet Res 2019; 21: e15166. [
DOI:10.2196/15166] [
PMID] [
PMCID]
17. Abu-Naser S, Alhabbash M. Male infertility expert system diagnoses and treatment. Am J Innovative Res Appl Sci 2016; 2: 181-192.
18. Letterie G, MacDonald A, Shi Z. An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: Process improvement and outcome-based predictions. Reprod Biomed Online 2022; 44: 254-260. [
DOI:10.1016/j.rbmo.2021.10.006] [
PMID]
19. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med 2018; 169: 467-473. [
DOI:10.7326/M18-0850] [
PMID]
20. Krejcie R, Morgan D. Determining sample size for research activities. Educ Psychol Meas 1970; 30: 607-610. [
DOI:10.1177/001316447003000308]
21. Nazari A, Garmaroudi G, Foroushani AR, Askari A. Psychometric assessment of the Persian adaptation of the attitudes toward seeking professional psychological help scale-short form. BMC Psychiatry 2024; 24: 75-85. [
DOI:10.1186/s12888-023-05388-2] [
PMID] [
PMCID]
22. Grant MJ, Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Info Libr J 2009; 26: 91-108. [
DOI:10.1111/j.1471-1842.2009.00848.x] [
PMID]
23. Lockwood C, Munn Z, Porritt K. Qualitative research synthesis: Methodological guidance for systematic reviewers utilizing meta-aggregation. Int J Evid Based Healthc 2015; 13: 179-187. [
DOI:10.1097/XEB.0000000000000062] [
PMID]
24. Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Summarizing systematic reviews: Methodological development, conduct and reporting of an umbrella review approach. Int J Evid Based Healthc 2015; 13: 132-140. [
DOI:10.1097/XEB.0000000000000055] [
PMID]
25. Raimundo J, Cabrita P. Artificial intelligence at assisted reproductive technology. Procedia Comput Sci 2021; 181: 442-447. [
DOI:10.1016/j.procs.2021.01.189]
26. Simi M, Nayaki KS, Parameswaran M, Sivadasan S. Exploring female infertility using predictive analytic. 2017 IEEE Global Humanitarian Technology Conference (GHTC); 2017 Oct 19: USA: 1-6. [
DOI:10.1109/GHTC.2017.8239343]
27. de Souza FD. An online infertility clinical decision support system. Asian Pac J Reprod 2017; 6: 221-225. [
DOI:10.4103/2305-0500.215933]
28. Riegler MA, Stensen MH, Witczak O, Andersen JM, Hicks S, Hammer HL, et al. Artificial intelligence in the fertility clinic: Status, pitfalls and possibilities. Hum Reprod 2021; 36: 2429-2442. [
DOI:10.1093/humrep/deab168] [
PMID]
29. Medenica S, Zivanovic D, Batkoska L, Marinelli S, Basile G, Perino A, et al. The future is coming: Artificial intelligence in the treatment of infertility could improve assisted reproduction outcomes-the value of regulatory frameworks. Diagnostics 2022; 12: 2979-2993. [
DOI:10.3390/diagnostics12122979] [
PMID] [
PMCID]
30. Mostaar A, Sattari M, Hosseini S, Deevband M. Use of artificial neural networks and PCA to predict results of infertility treatment in the ICSI method. J Biomed Phys Eng 2019; 9: 679-686. [
DOI:10.31661/JBPE.V0I0.1187] [
PMID] [
PMCID]
31. de Santiago I, Polanski L. Data-driven medicine in the diagnosis and treatment of infertility. J Clin Med 2022; 11: 6426-6448. [
DOI:10.3390/jcm11216426] [
PMID] [
PMCID]
32. Chen SM, Chen KY, Chiu CY, Hwu YM. Development of a decision support system for assisted reproductive technology. 62nd IISE annual conference and Expo; 2012: Orlando, USA. 1555-1563.
33. Hanassab S, Abbara A, Yeung AC, Voliotis M, Tsaneva-Atanasova K, Kelsey TW, et al. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med 2024; 7: 55. [
DOI:10.1038/s41746-024-01006-x] [
PMID] [
PMCID]
34. Dhombres F, Bonnard J, Bailly K, Maurice P, Papageorghiou AT, Jouannic JM. Contributions of artificial intelligence reported in obstetrics and gynecology journals: Systematic review. J Med Internet Res 2022; 24: e35465. [
DOI:10.2196/35465] [
PMID] [
PMCID]
35. Vaughan D, Pan W, Yacoby Y, Seidler EA, Leung AQ, Doshi-Velez F, et al. The application of machine learning methods to evaluate predictors of live birth in programmed thaw cycles. Fertil Steril 2019; 112: e273. [
DOI:10.1016/j.fertnstert.2019.07.808]
36. Meena K, Vijayalakshmi N. Analysis of factors causing infertility in women using statistical analysis and association rule mining. Indian J Public Health Res Dev 2015; 6: 120-125. [
DOI:10.5958/0976-5506.2015.00084.4]
37. Zahmatkeshan M, Farjam M, Mohammadzadeh N, Noori T, Karbasi Z, Mahmoudvand Z, et al. Design of infertility monitoring system: Minimum data set approach. J Med Life 2019; 12: 56-64. [
DOI:10.25122/jml-2018-0071] [
PMID] [
PMCID]
38. Bulletti C, Franasiak JM, Busnelli A, Sciorio R, Berrettini M, Aghajanova L, et al. Artificial intelligence, clinical decision support algorithms, mathematical models, calculators applications in infertility: Systematic review and hands-on digital applications. Mayo Clin Proc Digit Health 2024; 2: 518-532. [
DOI:10.1016/j.mcpdig.2024.08.007] [
PMID] [
PMCID]
39. Hafiz P, Nematollahi M, Boostani R, Namavar Jahromi B. Predicting implantation outcome of in vitro fertilization and intracytoplasmic sperm injection using data mining techniques. Int J Fertil Steril 2017; 11: 184-190.
40. Desouza K, Jacob B. Big data in the public sector: Lessons for practitioners and scholars. Administration Soc 2017; 49: 1043-1064. [
DOI:10.1177/0095399714555751]
41. Lu S-C, Brown RJ, Michalowski M. A clinical decision support system design framework for nursing practice. ACI Open 2021; 5: e84-e93. [
DOI:10.1055/s-0041-1736470]
42. Khong PCB, Holroyd E, Wang W. A critical review of the theoretical frameworks and the conceptual factors in the adoption of clinical decision support systems. Comput Inform Nurs 2015; 33: 555-570. [
DOI:10.1097/CIN.0000000000000196] [
PMID]
43. Canzona MR, Victorson DE, Murphy K, Clayman ML, Patel B, Puccinelli-Ortega N, et al. A conceptual model of fertility concerns among adolescents and young adults with cancer. Psychooncology 2021; 30: 1383-1392. [
DOI:10.1002/pon.5695] [
PMID] [
PMCID]
44. Maleki S, Kazemi A, Nasiri-Dehsorkhi H, Nekuei N. Design of conceptual model of psycho-social burden in infertile couples undergoing assisted reproductive treatments: A study protocol for a mixed method study. Health Sci Rep 2025; 8: e70854. [
DOI:10.1002/hsr2.70854] [
PMID] [
PMCID]