دوره 23، شماره 11 - ( 8-1404 )                   جلد 23 شماره 11 صفحات 952-937 | برگشت به فهرست نسخه ها

Ethics code: IR-UU-AEC-32108


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javanmard S, Najdegerami E, Razi M, Nikoo M. An experimental study on shrimp bioactive peptides restoring testicular function in a rat model of fatty liver disease via autophagy, redox balance, and energy transporters. IJRM 2025; 23 (11) :937-952
URL: http://ijrm.ir/article-1-3544-fa.html
بررسی تجربی تأثیر پپتیدهای زیست‌فعال میگوی سفید بر بهبود عملکرد بیضه در رت‌های مبتلا به بیماری کبد چرب غیرالکلی از طریق اتوفاژی، تعادل اکسید و احیا و ناقل‌های انرژی. International Journal of Reproductive BioMedicine. 1404; 23 (11) :937-952

URL: http://ijrm.ir/article-1-3544-fa.html


چکیده:   (154 مشاهده)
مقدمه: بیماری کبد چرب غیرالکلی یکی از بیماری‌های شایع امروزی است که می‌تواند باروری و عملکرد دستگاه تولیدمثل را مختل کند.
هدف: هدف این مطالعه بررسی اثرات جیره پرچرب (HFD) بر ساختار بیضه و نقش پپتیدهای زیست‌فعال حاصل از میگوی پاسفید در کاهش این اثرات بود.
مواد و روش­ ها: ضایعات میگوی پاسفید (HPs) با آنزیم آلکالاز در Co50 به مدت 3 ساعت هیدرولیز شدند. 24 رت نر ویستار (1/23 ± 230 گرم، 8 هفته) به‌طور تصادفی در 4 گروه (6 حیوان در هر قفس) تقسیم شدند: کنترل، HFD، HFD+HP20 و HFD+HP300 (جیره پرچرب + 20 و 300 mg/kg BW) پس از 10 هفته، بافت بیضه تحت بررسی‌های بافت‌شناسی، مولکولی و بیوشیمیایی قرار گرفت.
نتایج: در گروه HFD، مقادیر MDA و GSH افزایش و نسبت GSH/GSSG حدود 40% کاهش یافت (001/0 > p)، که بیانگر استرس احیایی بود. مصرف پپتیدها به‌ویژه در غلضت بالاتر موجب کاهش استرس، بهبود مورفولوژی لوله‌های اسپرم‌ساز، و افزایش شاخص‌های TDI و SPI شد. بیان ژن‌های اتوفاژی (Beclin1، Atg7، LC3-I، P62) در HFD افزایش یافت اما با مصرف پپتیدها بیان این ژن ­ها کاهش پیدا کرد. همچنین، کاهش ناقل‌های انرژی GLUT-1، GLUT-3 و MCT-4 در HFD در گروه‌های دریافت‌کننده پپتید بازیابی شد.
نتیجه­گیری: پپتیدهای زیست‌فعال با بهبود شاخص‌های TDI و SPI و بازیابی بیان ناقل‌های انرژی در سلول‌های سرتولی، حمایت متابولیکی مؤثرتری از سلول‌های زایا فراهم کردند. این نتایج نشان می‌دهد که استفاده از پپتیدهای حاصل از میگو می‌تواند رویکردی نوین برای بهبود اختلالات تولیدمثلی ناشی از NAFLDباشد.
نوع مطالعه: Original Article |

فهرست منابع
1. Kozłowska A. Clinical insights into non-alcoholic fatty liver disease and the therapeutic potential of flavonoids: An update. Nutrients 2025; 17: 956. [DOI:10.3390/nu17060956] [PMID] [PMCID]
2. Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy. Antioxidants 2021; 10: 174. [DOI:10.3390/antiox10020174] [PMID] [PMCID]
3. Meng K, Liu Q, Qin Y, Qin W, Zhu Z, Sun L, et al. Mechanism of mitochondrial oxidative phosphorylation disorder in male infertility. Chin Med J 2025; 138: 379-388. [DOI:10.1097/CM9.0000000000003126] [PMID] [PMCID]
4. Hussain T, Kandeel M, Metwally E, Murtaza G, Kalhoro DH, Yin Y, et al. Unraveling the harmful effect of oxidative stress on male fertility: A mechanistic insight. Front Endocrinol 2023; 14: 1070692. [DOI:10.3389/fendo.2023.1070692] [PMID] [PMCID]
5. Elfassy Y, Bongrani A, Levy P, Foissac F, Fellahi S, Faure C, et al. Relationships between metabolic status, seminal adipokines, and reproductive functions in men from infertile couples. Eur J Endocrinol 2020; 182: 67-77. [DOI:10.1530/EJE-19-0615] [PMID]
6. Moradian R, Najdegerami EH, Nikoo M, Nejati V. Ameliorating effects of bioactive peptides extracted from litopenaeus vannamei wastes on oxidative stress, glucose regulation, and autophagy gene expression in nonalcoholic fatty liver-induced rats. Evid Based Complement Alternat Med 2022; 2022: 2679634. [DOI:10.1155/2022/2679634] [PMID] [PMCID]
7. Zhang Q, Su G, Zhao T, Sun B, Zheng L, Zhao M. Neuroprotection of round scad (Decapterus maruadsi) hydrolysate in glutamate-damaged PC12 cells: Possible involved signaling pathways and potential bioactive peptides. J Funct Food 2020; 64: 103690. [DOI:10.1016/j.jff.2019.103690]
8. Valizadeh M, Nejati V, Shalizar-Jalali A, Najdegerami E, Najafi Gh. Effect of bioactive peptides on heat stress-induced testiculopathies in mature rats: Immunohistopathological evidence. Vet Res Forum 2025; 16: 106-116.
9. Camerano Spelta Rapini C, Di Berardino C, Peserico A, Capacchietti G, Barboni B. Can mammalian reproductive health withstand massive exposure to polystyrene micro-and nanoplastic derivatives? A systematic review. Int J Mol Sci 2024; 25: 12166. [DOI:10.3390/ijms252212166] [PMID] [PMCID]
10. Shen Y, You Y, Zhu K, Fang C, Yu X, Chang D. Bibliometric and visual analysis of blood-testis barrier research. Front Pharmacol 2022; 13: 969257. [DOI:10.3389/fphar.2022.969257] [PMID] [PMCID]
11. Luo D, Zhang M, Su X, Liu L, Zhou X, Zhang X, et al. High fat diet impairs spermatogenesis by regulating glucose and lipid metabolism in Sertoli cells. Life Sci 2020; 257: 118028. [DOI:10.1016/j.lfs.2020.118028] [PMID]
12. Gao G, Zhao Y, Wang K, Wang F. Sodium vitamin C transporter 2 orchestrates lactate metabolism in mouse Sertoli cells. J Mol Endocrinol 2021; 66: 157-170. [DOI:10.1530/JME-20-0101] [PMID]
13. de Oliveira VS, Castro AJG, Domingues JT, de Souza AZP, da Luz Scheffer D, Latini A, et al. A Brazilian pulp and paper mill effluent disrupts energy metabolism in immature rat testis and alters Sertoli cell secretion and mitochondrial activity. Anim Reprod 2020; 17: e20190116. [DOI:10.1590/1984-3143-ar2019-0116] [PMID] [PMCID]
14. Cannarella R, Curto R, Condorelli RA, Lundy SD, La Vignera S, Calogero AE. Molecular insights into Sertoli cell function: How do metabolic disorders in childhood and adolescence affect spermatogonial fate? Nat Commun 2024; 15: 5582. [DOI:10.1038/s41467-024-49765-1] [PMID] [PMCID]
15. Soudmand P, Tofighi A, Azar JT, Razi M, Pakdel FG. Different continuous exercise training intensities induced effect on sertoli-germ cells metabolic interaction; implication on GLUT-1, GLUT-3 and MCT-4 transporting proteins expression level. Gene 2021; 783: 145553. [DOI:10.1016/j.gene.2021.145553] [PMID]
16. Bernardino RL, Marinelli RA, Maggio A, Gena P, Cataldo I, Alves MG, et al. Hepatocyte and sertoli cell aquaporins, recent advances and research trends. Int J Mol Sci 2016; 17: 1096. [DOI:10.3390/ijms17071096] [PMID] [PMCID]
17. Soltani M, Rahmati M, Nikravesh MR, Saeidinejat S, Jalali M. Evaluation of Sertoli cell autophagy associated with laminin, fibronectin, and caspase‐3 proteins' alteration, following testicular torsion rat. Andrologia 2022; 54: e14272. [DOI:10.1111/and.14272] [PMID]
18. Nikoo M, Xu X, Regenstein JM, Noori F. Autolysis of Pacific white shrimp (Litopenaeus vannamei) processing by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of hydrolysates. Food Biosci 2021; 39: 100844. [DOI:10.1016/j.fbio.2020.100844]
19. Hadavi M, Najdegerami E, Nikoo M, Nejati V. Protective effect of protein hydrolysates from Litopenaeus vannamei waste on oxidative status, glucose regulation, and autophagy genes in non-alcoholic fatty liver disease in Wistar rats. Iran J Basic Med Sci 2022; 25: 954-963. [DOI:10.1155/2022/2679634] [PMID] [PMCID]
20. Zamir‐Nasta T, Razi M, Shapour H, Malekinejad H. Roles of p21, p53, cyclin D1, CDK‐4, estrogen receptor α in aflatoxin B1‐induced cytotoxicity in testicular tissue of mice. Environ Toxicol 2018; 33: 385-395. [DOI:10.1002/tox.22524] [PMID]
21. Aeeni M, Razi M, Alizadeh A, Alizadeh A. The molecular mechanism behind insulin protective effects on testicular tissue of hyperglycemic rats. Life Sci 2021; 277: 119394. [DOI:10.1016/j.lfs.2021.119394] [PMID]
22. Amer M, GamalEl Din SF, Zeidan A, Adel A, Elsisi I, Fakhry E, et al. Intrasurgical seminiferous tubular diameter correlates with total motile sperm count in azoospermia: A prospective cohort study. Reprod Sci 2022; 29: 1836-1843. [DOI:10.1007/s43032-022-00927-w] [PMID] [PMCID]
23. Soleimani Mehranjani M, Azizi M, Sadeghzadeh F. The effect of melatonin on testis histological changes and spermatogenesis indexes in mice following treatment with dexamethasone. Drug Chem Toxicol 2022; 45: 1140-1149. [DOI:10.1080/01480545.2020.1809672] [PMID]
24. Xiao W, Loscalzo J. Metabolic responses to reductive stress. Antioxid Redox Signal 2020; 32: 1330-1347. [DOI:10.1089/ars.2019.7803] [PMID] [PMCID]
25. Li M, Zhou M, Wei Y, Jia F, Yan Y, Zhang R, et al. The beneficial effect of oyster peptides and oyster powder on cyclophosphamide‐induced reproductive impairment in male rats: A comparative study. J Food Biochem 2020; 44: e13468. [DOI:10.1111/jfbc.13468] [PMCID]
26. Liu G, Li S, Ren J, Wang C, Zhang Y, Su X, et al. Effect of animal-sourced bioactive peptides on the in vitro development of mouse preantral follicles. J Ovarian Res 2020; 13: 108. [DOI:10.1186/s13048-020-00695-8] [PMID] [PMCID]
27. Gharehbagh SA, Azar JT, Razi M. ROS and metabolomics-mediated autophagy in rat's testicular tissue alter after exercise training: Evidence for exercise intensity and outcomes. Life Sci 2021; 277: 119585. [DOI:10.1016/j.lfs.2021.119585] [PMID]
28. Guo H, Ouyang Y, Yin H, Cui H, Deng H, Liu H, et al. Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biol 2022; 49: 102227. [DOI:10.1016/j.redox.2021.102227] [PMID] [PMCID]
29. Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, et al. The interplay between oxidative stress and autophagy: Focus on the development of neurological diseases. Behav Brain Funct 2022; 18: 3. [DOI:10.1186/s12993-022-00187-3] [PMID] [PMCID]
30. Xu Y, Qian C, Wang Q, Song L, He Z, Liu W, et al. Deacetylation of ATG7 drives the induction of macroautophagy and LC3-associated microautophagy. Autophagy 2024; 20: 1134-1146. [DOI:10.1080/15548627.2023.2287932] [PMID] [PMCID]
31. Runwal G, Stamatakou E, Siddiqi FH, Puri C, Zhu Y, Rubinsztein DC. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep 2019; 9: 10147. [DOI:10.1038/s41598-019-46657-z] [PMID] [PMCID]
32. Takahashi D, Arimoto H. Selective autophagy as the basis of autophagy-based degraders. Cell Chem Biol 2021; 28: 1061-1071. [DOI:10.1016/j.chembiol.2021.05.006] [PMID]
33. Metur SP, Lei Y, Zhang Z, Klionsky DJ. Regulation of autophagy gene expression and its implications in cancer. J Cell Sci 2023; 136: jcs260631. [DOI:10.1242/jcs.260631] [PMID] [PMCID]
34. Pérez-Pérez ME, Lemaire SD, Crespo JL. The ATG4 protease integrates redox and stress signals to regulate autophagy. J Exp Bot 2021; 72: 3340-3351. [DOI:10.1093/jxb/erab063] [PMID]
35. Tian Y, Song W, Xu D, Chen X, Li X, Zhao Y. Autophagy induced by ROS aggravates testis oxidative damage in diabetes via breaking the feedforward loop linking p62 and Nrf2. Oxid Med Cell Longev 2020; 2020: 7156579. [DOI:10.1155/2020/7156579] [PMID] [PMCID]
36. Xu R, Wang F, Zhang Z, Zhang Y, Tang Y, Bi J, et al. Diabetes‐induced autophagy dysregulation engenders testicular impairment via oxidative stress. Oxid Med Cell Longev 2023; 2023: 4365895. [DOI:10.1155/2023/4365895] [PMID] [PMCID]
37. Contreras-Angulo JR, Mata TM, Cuellar-Bermudez SP, Caetano NS, Chandra R, Garcia-Perez JS, et al. Symbiotic co-culture of scenedesmus sp. and azospirillum brasilense on N-deficient media with biomass production for biofuels. Sustainability 2019; 11: 707. [DOI:10.3390/su11030707]
38. Suleiman JB, Nna VU, Zakaria Z, Othman ZA, Bakar ABA, Mohamed M. Obesity-induced testicular oxidative stress, inflammation and apoptosis: Protective and therapeutic effects of orlistat. Reprod Toxicol 2020; 95: 113-122. [DOI:10.1016/j.reprotox.2020.05.009] [PMID]
39. Ahmed AA, Mollica A, Stefanucci A, Tayrab E, Ahmed H, Essa MEA. Gum Arabic improves the reproductive capacity through upregulation of testicular glucose transporters (GLUTs) mRNA expression in alloxan induced diabetic rat. Bioact Carbohydrat Diet Fibre 2020; 22: 100218. [DOI:10.1016/j.bcdf.2020.100218]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به International Journal of Reproductive BioMedicine می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb