Volume 11, Issue 11 (12-2013)                   IJRM 2013, 11(11): 905-0 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Xuemei L, Jing Y, Bei X, Juan H, Xinling R, Qun L et al . Retinoic acid improve germ cell differentiation from human embryonic stem cells. IJRM 2013; 11 (11) :905-0
URL: http://ijrm.ir/article-1-364-en.html
1- Reproductive Medicine Center, Yantai Yuhuangding Hospital, Yantai 264000, China , xuemeiliu02@yeah.net
2- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Abstract:   (2425 Views)
Background: Creation of artificial gametes may provide a universal solution for these patients of lacking gametes. Stem cell technology may provide a way to obtain fully functional gametes. Retinoic acid (RA) can initiate meiosis. Several studies have demonstrated that RA can promote sperm cells differentiation from mouse embryonic stem cells (mESCs) and other cells from human embryonic stem cells (hESCs).
Objective: We sought to determine whether RA could promote differentiation of germ cells from hESCs.
Materials and Methods: hESCs were differentiated as embryoid bodies (EBs) in suspension with all-trans RA (atRA) or without atRA for 0, 1, 3, 5 and 7 days, and then compared the expression of VASA, SCP3, GDF9 and TEKT1 by real-time PCR. The statistical differences were evaluated by one way ANOVA.
Results: The expression of germ cell-specific markers including the gonocyte marker VASA, the meiotic marker SCP3, and postmeiotic markers, GDF9 and TEKT1, all increased in the presence and absence of RA as EB differentiation progressed. In addition, the expression of these markers increased an average of 9.3, 6.9, 7.2 and 11.8 fold respectively in the presence of RA, compared to the absence of RA, over 5 days differentiation.
Conclusion: Our results indicate that hESCs may have the potential to differentiate to primordial germ cells (PGCs) and early gametes. And RA can improve germ cells differentiation from hESCs.
Full-Text [PDF 318 kb]   (706 Downloads) |   |   Full-Text (HTML)  (281 Views)  
Type of Study: Original Article |

References
1. Reproductive Endocrinology and Infertility Committee, Family Physicians Advisory Committee, Maternal-Fetal Medicine Committee, Executive and Council of the Society of Obstetricians, Liu K, Case A. Advanced reproductive age and fertility. J Obstet Gynaecol Can 2011; 33: 1165-1175. [DOI:10.1016/S1701-2163(16)35087-3]
2. Crosnoe LE, Kim ED. Impact of age on male fertility. Curr Opin Obstet Gynecol 2013; 25: 181-185. [DOI:10.1097/GCO.0b013e32836024cb]
3. Jullien J, Pasque V, Halley-Stott RP, Mlyamoto K, Gurdon JB. Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process? Nat Rev Mol Cell Biol 2011; 12: 453-459. [DOI:10.1038/nrm3140]
4. Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003; 300: 1251-1256. [DOI:10.1126/science.1083452]
5. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004; 427: 106-107. [DOI:10.1038/nature02247]
6. Payer B, Chuva de Sousa Lopes SM, Barton SC, Lee C, Saitou M, Surani MA. Generation of stella-GFP transgenic mice: a novel tool to study germ cell development. Genesis 2006; 44: 75-83. [DOI:10.1002/gene.20187]
7. Teramura T, Takehara T, Kawata N, Fujinami N, Mitani T, Takenoshita M, et al. Primate embryonic stem cells proceed to early gametogenesis in vitro. Cloning Stem Cells 2007; 9: 144-156. [DOI:10.1089/clo.2006.0070]
8. Novak I, Lightfoot DA, Wang H, Eriksson A, Mahdy E, Hoog C. Mouse Embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells 2006; 24: 1931-1936. [DOI:10.1634/stemcells.2005-0520]
9. Lacham-Kaplan O, Chy H, Trounson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells 2006; 24: 266-273. [DOI:10.1634/stemcells.2005-0204]
10. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 2003; 100: 11457-11462. [DOI:10.1073/pnas.1932826100]
11. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006; 86: 654-663. [DOI:10.1038/labinvest.3700429]
12. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006; 11: 125-132. [DOI:10.1016/j.devcel.2006.05.010]
13. Qing T, Shi Y, Qin H, Ye X, Wei W, Liu H, et al. Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulose cells. Differentiation 2007; 75: 902-911. [DOI:10.1111/j.1432-0436.2007.00181.x]
14. Clark AT, Bodnar MS, Fox M, Rodriquez RT, Abeyta MJ, Firpo MT, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004; 13: 727-739. [DOI:10.1093/hmg/ddh088]
15. Clark AT, Reijo Pera RA. Modeling human germ cell development with embryonic stem cells. Reg Med 2006; 1: 85-93. [DOI:10.2217/17460751.1.1.85]
16. Kee K, Gonsalves JM, Clark AT, Pera RA. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cell. Stem Cells Dev 2006; 15: 831-837. [DOI:10.1089/scd.2006.15.831]
17. Tilgner K, Atkinson SP, Golebiewska A, Stojkovic M, Lako M, Armstrong L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells 2008; 26: 3075-3085. [DOI:10.1634/stemcells.2008-0289]
18. Aflatoonian BA, Fazeli A, Ruban L, Andrews P, Moore H. Human embryonic stem cells differentiate to primordial germ cells as determined by gene expression profiles and antibody markers. Hum Reprod 2005; 20: i6.
19. Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 2009; 462: 222-225. [DOI:10.1038/nature08562]
20. Koshimizu U, Watanabe M, Nakatsuji N. Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro. Dev Biol 1995; 168: 683-685. [DOI:10.1006/dbio.1995.1113]
21. Morriss-Kay GM, Sokolova N. Review Embryonic development and pattern formation. FASEB J 1996; 10: 961-968. [DOI:10.1096/fasebj.10.9.8801178]
22. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA 2006; 103: 2474-2479. [DOI:10.1073/pnas.0510813103]
23. Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, et al. Retinoid signaling determines germ cell fate in mice. Science 2006; 312: 596-600. [DOI:10.1126/science.1125691]
24. Swain A. Sex determination: time for meiosis? The gonad decides. Curr Biol 2006; 16: R507-509. [DOI:10.1016/j.cub.2006.06.009]
25. Silva C, Wood JR, Salvador L, Zhang Z, Kostetskii I, Williams CJ, et al. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone. Mol Reprod Dev 2009; 76: 11-21. [DOI:10.1002/mrd.20925]
26. Huang H, Zhao X, Chen L, Xu C, Yao X, Lu Y, et al. Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem Biophys Res Commun 2006; 351: 321-327. [DOI:10.1016/j.bbrc.2006.09.171]
27. Lim UM, Sidhu KS, Tuch BE. Derivation of Motor Neurons from three Clonal Human Embryonic Stem Cell lines. Curr Neurovasc Res 2006; 3: 281-288. [DOI:10.2174/156720206778792902]
28. Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 2007; 17: 333-344. [DOI:10.1038/cr.2007.28]
29. Chen H, Qian K, Hu J, Liu D, Lu W, Yang Y, et al. The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores. Hum Reprod 2005; 20: 2201-2206. [DOI:10.1093/humrep/dei010]
30. Lopez-Casas PP, Lopez-Fernandez LA, Parraga M, Krimer DB, del Mazo J. Developmental regulation of expression of Ran/M1 and Ran/M2 isoforms of Ran-GTPase in mouse testis. Int J Dev Biol 2003; 47: 307-310.
31. Li HG, Ding XF, Liao AH, Kong XB, Xiong CL. Expression of CatSper family transcripts in the mouse testis during post-natal development and human ejaculated spermatozoa: relationship to sperm motility. Mol Hum Reprod 2007; 13: 299-306. [DOI:10.1093/molehr/gam009]
32. Pfaffi MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30: e36. [DOI:10.1093/nar/30.9.e36]
33. Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP. The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA 2000; 97: 9585-9590. [DOI:10.1073/pnas.160274797]
34. Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 2000; 5: 73-83. [DOI:10.1016/S1097-2765(00)80404-9]
35. McLaren A. Primordial germ cells in the mouse. Dev Biol 2003; 262: 1-15. [DOI:10.1016/S0012-1606(03)00214-8]
36. Miano JM, Berk BC. Retinoids: new insight into smooth muscle cell growth inhibition. Arterioscler Thromb Vasc Biol 2001; 21: 724-726. [DOI:10.1161/01.ATV.21.5.724]
37. Bain G., Kitchens D, Yao M, Huettner JE, Gottlieb DI. Embryonic stem cells express neuronal properties in vitro. Dev Biol 1995; 168: 342-357. [DOI:10.1006/dbio.1995.1085]
38. Drab M, Haller H, Bychkov R, Erdmann B, Lindschau C, Haase H, et al. From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J 1997; 11: 905-915. [DOI:10.1096/fasebj.11.11.9285489]
39. Wobus AM, Guan K, Yang HT, Boheler KR. Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 2002; 185: 127-156.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb