دوره 23، شماره 11 - ( 8-1404 )                   جلد 23 شماره 11 صفحات 896-881 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baradaran Bagheri R, Mohammadian S. Unveiling the molecular nexus: Long non-coding RNAs, RNA-binding proteins, and DNA damage in ovarian ischemia-reperfusion injury: A narrative review. IJRM 2025; 23 (11) :881-896
URL: http://ijrm.ir/article-1-3693-fa.html
نقش رونوشت‌های بلند غیرکُدکننده (lncRNAs)، پروتئین‌های متصل‌شونده به RNA و آسیب DNA در آسیب ایسکمی/پرفیوژن تخمدان: یک مرور روایتی. International Journal of Reproductive BioMedicine. 1404; 23 (11) :881-896

URL: http://ijrm.ir/article-1-3693-fa.html


چکیده:   (165 مشاهده)
آسیب ایسکمی/پرفیوژن تخمدان که با نام پیش‌شرطی‌سازی هایپراُکسیک تخمدان نیز شناخته می‌شود، پاتولوژی‌ای است که با قطع جریان خون تخمدان و بازگشت آن همراه بوده و موجب آسیب و اختلال عملکرد می‌گردد. بنابراین، شناسایی اجزای مولکولی از جمله lncRNA ها و پروتئین‌های متصل‌شونده به RNA (RBP ها) و همچنین نقش آن‌ها در پاسخ به آسیب DNA، برای درک مکانیسم‌های زیربنایی و یافتن اهداف درمانی بالقوه اهمیت دارد. الگوی بیان lncRNA و تنظیم پاسخ به آسیب DNA در فرایندهای سلولی مختلف می‌تواند از طریق تعامل با پروتئین‌های متصل‌شونده به RNA کنترل شود.   lncRNA ها با ایفای نقش به‌عنوان داربست، راهنما یا تله در تنظیم فرایندهای RNA، میانجی‌گری در ترمیم DNA و پاسخ‌های سلولی دیگر به استرس ژنوتوکسیک عمل می‌کنند. تغییر در تعامل lncRNA–RBP در بیماری‌های متعددی از جمله آسیب ایسکمی/پرفیوژن تخمدان (IRI) دخیل بوده و بررسی بیشتر آن‌ها را به‌عنوان اهداف درمانی ضروری می‌سازد. اختلال در RBP ها منجر به برهم‌خوردن هموستاز RNA، کاهش ترمیم DNA و تشدید آسیب بافتی ناشی از IRI در تخمدان‌ها می‌شود. این مسیرها در تنظیم چرخه سلولی، ترمیم DNA و تنظیم آپوپتوز در IRI تخمدان دخیل‌اند و دستکاری این مسیرها به‌وسیله lncRNA ها و RBP های معرفی‌شده می‌تواند در پیشرفت بیماری و/یا هدف‌گذاری درمانی مؤثر باشد. مطالعه این فرایندهای مولکولی چشم‌اندازی نویدبخش برای درمان‌های «تقریباً هدفمند» و فردمحور فراهم می‌آورد. مطالعات آینده باید به بررسی سهم افتراقی lncRNA ها و RBP های خاص و همچنین مسیرهای پاسخ به آسیب DNA در IRI تخمدان بپردازند تا برآورد پیش‌آگهی بهتری ارائه شود و عملکرد تخمدان در بیماران بهبود یابد.
نوع مطالعه: Review article |

فهرست منابع
1. Soltani M, Moghimian M, Abtahi H, Shokoohi M. The protective effect of Matricaria chamomilla extract on histological damage and oxidative stress induced by torsion/detorsion in adult rat ovary. Int J Womens Health Reprod Sci 2017; 5: 187-192. [DOI:10.15296/ijwhr.2017.34]
2. Shoorei H, Shokoohi M, Niazi V, Abtahi-Eivary S-H, Salimnejad R, Moghimian M, et al. Effect of hydro-alcoholic extract of Olea europaea on apoptosis-related genes and oxidative stress in a rat model of torsion/detorsion-induced ovarian damage. Asian Pac J Reprod 2019; 8: 148. [DOI:10.4103/2305-0500.262831]
3. Shokri F, Shokoohi M, Roudi Rasht Abadi A, Kalarestaghi H. The ameliorative effect of Galega officinalis extract on histological damages, oxidative stress induced by torsion-detorsion in adult rats' ovarian. Int J Womens Health Reprod Sci 2019; 7: 119-123. [DOI:10.15296/ijwhr.2019.19]
4. Novoa M, Friedman J, Mayrink M. Ovarian torsion: Can we save the ovary? Arch Gynecol Obstet 2021; 304: 191-195. [DOI:10.1007/s00404-021-06008-8] [PMID]
5. Gil N, Ulitsky I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 2020; 21: 102-117. [DOI:10.1038/s41576-019-0184-5] [PMID]
6. Bhatti GK, Khullar N, Sidhu IS, Navik US, Reddy AP, Reddy PH, et al. Emerging role of non‐coding RNA in health and disease. Metab Brain Dis 2021; 36: 1119-1134. [DOI:10.1007/s11011-021-00739-y] [PMID] [PMCID]
7. Oo JA, Brandes RP, Leisegang MS. Long non-coding RNAs: Novel regulators of cellular physiology and function. Pflügers Arch 2022; 474: 191-204. [DOI:10.1007/s00424-021-02641-z] [PMID] [PMCID]
8. Goswami B, Nag S, Ray PS. Fates and functions of RNA‐binding proteins under stress. Wiley Interdiscip Rev RNA 2024; 15: e1825. [DOI:10.1002/wrna.1825] [PMID]
9. Zhao Y, Mir C, Garcia-Mayea Y, Paciucci R, Kondoh H, LLeonart M. RNA-binding proteins: Underestimated contributors in tumorigenesis. Semin Cancer Biol 2022; 86: 431-444. [DOI:10.1016/j.semcancer.2022.01.010] [PMID]
10. Kang D, Lee Y, Lee J-S. RNA-binding proteins in cancer: Functional and therapeutic perspectives. Cancers 2020; 12: 2699. [DOI:10.3390/cancers12092699] [PMID] [PMCID]
11. Pankiewicz K, Laudański P, Issat T. The role of noncoding RNA in the pathophysiology and treatment of premature ovarian insufficiency. Int J Mol Sci 2021; 22: 9336. [DOI:10.3390/ijms22179336] [PMID] [PMCID]
12. Gao Z, Luan X, Wang X, Han T, Li X, Li Z, et al. DNA damage response-related ncRNAs as regulators of therapy resistance in cancer. Front Pharmacol 2024; 15: 1390300. [DOI:10.3389/fphar.2024.1390300] [PMID] [PMCID]
13. Barghi B, Shokoohi M, Khaki AA, Khaki A, Moghimian M, Soltani M. Eugenol improves tissue damage and oxidative stress in adult female rats after ovarian torsion/detorsion. J Obstet Gynaecol 2021; 41: 933-938. [DOI:10.1080/01443615.2020.1816938] [PMID]
14. Khaje Roshanaee M, Abtahi-Eivary S-H, Shokoohi M, Fani M, Mahmoudian A, Moghimian M. Protective effect of minocycline on Bax and Bcl-2 gene expression, histological damages and oxidative stress induced by ovarian torsion in adult rats. Int J Fertil Steril 2022; 16: 30-35.
15. Baradaran Bagheri R, Salami SS, Mohammadadeh Boukani L, Khaki AA. The regulatory effect of eugenol on FSHR, LHCGR, and ER expression during follicular development in female rats with ovarian torsion. Int J Womens Health Reprod Sci 2023; 11: 138-144. [DOI:10.15296/ijwhr.2023.24]
16. Baradaran Bagheri R, Chavoshinezhad N, Barghi B, Soleymaniinallou M, Shokoohi M, Najafnezhad P, et al. Effects of Cornus mas extract (Anthocyanin) and treadmill exercise on hormonal and histological effects in the rat model of polycystic ovary syndrome. Int J Womens Health Reprod Sci 2025; 13: 37-43. [DOI:10.15296/ijwhr.2024.6004]
17. Malkov MI, Lee CT, Taylor CT. Regulation of the hypoxia-inducible factor (HIF) by pro-inflammatory cytokines. Cells 2021; 10: 2340. [DOI:10.3390/cells10092340] [PMID] [PMCID]
18. Eftekhar M, Baradaran Bagheri R, Neghab N, Hosseinisadat R. Evaluation of pretreatment with Cetrotide in an antagonist protocol for patients with PCOS undergoing IVF/ICSI cycles: A randomized clinical trial. JBRA Assist Reprod 2018; 22: 238. [DOI:10.5935/1518-0557.20180039] [PMID] [PMCID]
19. Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8: 70. [DOI:10.1038/s41392-023-01332-8] [PMID] [PMCID]
20. Andrijevic D, Spajic A, Hameed I, Sheth KN, Parnia S, Griesemer AD, et al. Mechanisms and strategies for organ recovery. Nat Rev Bioeng 2025; 3: 1-16. [DOI:10.1038/s44222-025-00293-7]
21. Aljarbou F. Investigating the mechanism of radioresistance in SPRTN-depleted cells [Dphil thesis]. University of Oxford; 2024.
22. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Compr Physiol 2017; 7: 113-170. [DOI:10.1002/j.2040-4603.2017.tb00741.x]
23. Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, et al. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9: 12. [DOI:10.1038/s41392-023-01688-x] [PMID] [PMCID]
24. Yan F, Zhao Q, Li Y, Zheng Z, Kong X, Shu C, et al. The role of oxidative stress in ovarian aging: A review. J Ovarian Res 2022; 15: 100. [DOI:10.1186/s13048-022-01032-x] [PMID] [PMCID]
25. Güler MC, Tanyeli A, Akdemir FNE, Eraslan E, Şebin SÖ, Erdoğan DG, et al. An overview of ischemia-reperfusion injury: Review on oxidative stress and inflammatory response. Eurasian J Med 2022; 54 (Suppl.): S62. [DOI:10.5152/eurasianjmed.2022.22293] [PMID] [PMCID]
26. Li Q, Li Z, Fan Z, Yang Y, Lu C. Involvement of non-coding RNAs in the pathogenesis of myocardial ischemia/reperfusion injury. Int J Mol Med 2021; 47: 42. [DOI:10.3892/ijmm.2021.4875] [PMID] [PMCID]
27. Cao Y, Yang Y, Guo C, Zong J, Li M, Li X, et al. Role of RNA-binding proteins in regulating cell adhesion and progression of the atherosclerotic plaque and plaque erosion. Curr Atheroscler Rep 2024; 27: 8. [DOI:10.1007/s11883-024-01250-2] [PMID]
28. Zhang H, Li M, Yao J, Jiang X, Feng J, Shi X, et al. Long non-coding RNA 1810026B05Rik mediates cerebral ischemia/reperfusion-induced neuronal injury through NF-κB pathway activation. Int J Mol Sci 2025; 26: 9756. [DOI:10.3390/ijms26199756] [PMID] [PMCID]
29. Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, cellular homeostasis, and disease pathology. Cells 2022; 11: 2517. [DOI:10.3390/cells11162517] [PMID] [PMCID]
30. Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13: 930171. [DOI:10.3389/fimmu.2022.930171] [PMID] [PMCID]
31. Marinescu M-C, Lazar A-L, Marta MM, Cozma A, Catana C-S. Non-coding RNAs: Prevention, diagnosis, and treatment in myocardial ischemia-reperfusion injury. Int J Mol Sci 2022; 23: 2728. [DOI:10.3390/ijms23052728] [PMID] [PMCID]
32. Borkiewicz L, Kalafut J, Dudziak K, Przybyszewska-Podstawka A, Telejko I. Decoding LncRNAs. Cancers 2021; 13: 2643. [DOI:10.3390/cancers13112643] [PMID] [PMCID]
33. Briata P, Gherzi R. Long non-coding RNA-ribonucleoprotein networks in the post-transcriptional control of gene expression. Noncoding RNA 2020; 6: 40. [DOI:10.3390/ncrna6030040] [PMID] [PMCID]
34. Aranega AE, Franco D. Post-transcriptional regulation by proteins and non-coding RNAs. Congenital heart diseases: The broken heart. In: Rickert-Sperling S, Kelly RG, Driscoll DJ. Clinical features, human genetics and molecular pathways. Vienna: Springer; 2016: 153-171. [DOI:10.1007/978-3-7091-1883-2_13]
35. Statello L, Guo C-J, Chen L-L, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22: 96-118. https://doi.org/10.1038/s41580-020-00315-9 [DOI:10.1038/s41580-021-00330-4] [PMID] [PMCID]
36. Usman M, Li A, Wu D, Qinyan Y, Yi LX, He G, et al. The functional role of lncRNAs as ceRNAs in both ovarian processes and associated diseases. Noncoding RNA Res 2024; 9: 165-177. [DOI:10.1016/j.ncrna.2023.11.008] [PMID] [PMCID]
37. Zhang Y, Zhang J, Wang F, Wang L. Hypoxia‐related lncRNA prognostic model of ovarian cancer based on big data analysis. J Oncol 2023; 2023: 6037121. [DOI:10.1155/2023/6037121] [PMID] [PMCID]
38. Hou J, Zhang G, Wang X, Wang Y, Wang K. Functions and mechanisms of lncRNA MALAT1 in cancer chemotherapy resistance. Biomark Res 2023; 11: 23. [DOI:10.1186/s40364-023-00467-8] [PMID] [PMCID]
39. Kishore S, Luber S, Zavolan M. Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Brief Funct Genomics 2010; 9: 391-404. [DOI:10.1093/bfgp/elq028] [PMID] [PMCID]
40. Tani H. Biomolecules interacting with long noncoding RNAs. Biology 2025; 14: 442. [DOI:10.3390/biology14040442] [PMID] [PMCID]
41. Zhao X, Li Q, Zhu X, Jiao Y, Yang H, Feng J. Protein modifications in hepatic ischemia-reperfusion injury: Molecular mechanisms and targeted therapy. Front Immunol 2025; 16: 1553298. [DOI:10.3389/fimmu.2025.1553298] [PMID] [PMCID]
42. Pascale A, Govoni S. The complex world of post-transcriptional mechanisms: Is their deregulation a common link for diseases? Focus on ELAV-like RNA-binding proteins. Cell Mol Life Sci 2012; 69: 501-517. [DOI:10.1007/s00018-011-0810-7] [PMID] [PMCID]
43. Cui S, Peng Q, Ma Q, Xu X, Zhang W, Jiang X, et al. Crosstalk between RNA-binding proteins and non-coding RNAs in tumors: Molecular mechanisms, and clinical significance. Int J Biol Sci 2025; 21: 2991-3010. [DOI:10.7150/ijbs.109593] [PMID] [PMCID]
44. Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9: 26. [DOI:10.1038/s41392-024-01734-2] [PMID] [PMCID]
45. Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, et al. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12: 100032. [DOI:10.1016/j.gmg.2024.100032] [PMID] [PMCID]
46. Biayna J, Dumbović G. Decoding subcellular RNA localization one molecule at a time. Genome Biol 2025; 26: 45. [DOI:10.1186/s13059-025-03507-8] [PMID] [PMCID]
47. Parra AS, Johnston CA. Emerging roles of RNA-binding proteins in neurodevelopment. J Dev Biol 2022; 10: 23. [DOI:10.3390/jdb10020023] [PMID] [PMCID]
48. Huang H, Li L, Wen K. Interactions between long non coding RNAs and RNA binding proteins in cancer (review). Oncol Rep 2021; 46: 256. [DOI:10.3892/or.2021.8207] [PMID] [PMCID]
49. Zhu J, Mo Y-Y, Peng W-X. RNA binding protein-mediated competing endogenous RNA mechanism in cancer. Gene 2025; 963: 149606. [DOI:10.1016/j.gene.2025.149606] [PMID]
50. Harvey R, Dezi V, Pizzinga M, Willis AE. Post-transcriptional control of gene expression following stress: The role of RNA-binding proteins. Biochem Soc Trans 2017; 45: 1007-1014. [DOI:10.1042/BST20160364] [PMID] [PMCID]
51. Pressly JD, Park F. DNA repair in ischemic acute kidney injury. Am J Physiol Renal Physiol 2017; 312: F551-F555. [DOI:10.1152/ajprenal.00492.2016] [PMID] [PMCID]
52. Gonfloni S, Jodice C, Gustavino B, Valentini E. DNA damage stress response and follicle activation: Signaling routes of mammalian ovarian reserve. Int J Mol Sci 2022; 23: 14379. [DOI:10.3390/ijms232214379] [PMID] [PMCID]
53. Xu X, Wang Z, Lv L, Liu C, Wang L, Sun Y-N, et al. Molecular regulation of DNA damage and repair in female infertility: A systematic review. Reprod Biol Endocrinol 2024; 22: 103. [DOI:10.1186/s12958-024-01273-z] [PMID] [PMCID]
54. Nikfarjam S, Singh KK. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med 2023; 12: 4380-4404. [DOI:10.1002/cam4.5274] [PMID] [PMCID]
55. Gorgoulis VG, Pefani DE, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246: 12-40. [DOI:10.1002/path.5097] [PMID] [PMCID]
56. Huang R-X, Zhou P-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5: 60. [DOI:10.1038/s41392-020-0150-x] [PMID] [PMCID]
57. Ribes-Zamora A. The role of the DNA damage response in ataxia-telangiectasia syndrome. In: Fitzgerald M. Neurodevelopment and neurodevelopmental disorder. Rijeka: IntechOpen; 2019. [DOI:10.5772/intechopen.84902]
58. Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 2013; 5: a012716. [DOI:10.1101/cshperspect.a012716] [PMID] [PMCID]
59. Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: Inhibition ≠ deletion. Cell Biosci 2020; 10: 8. [DOI:10.1186/s13578-020-0376-x] [PMID] [PMCID]
60. Clay DE, Fox DT. DNA damage responses during the cell cycle: Insights from model organisms and beyond. Genes (Basel) 2021; 12: 1882. [DOI:10.3390/genes12121882] [PMID] [PMCID]
61. Alemi F, Poornajaf Y, Hosseini F, Vahedian V, Gharekhani M, Shoorei H, et al. Interaction between lncRNAs and RNA-binding proteins (RBPs) influences DNA damage response in cancer chemoresistance. Mol Biol Rep 2024; 51: 308. [DOI:10.1007/s11033-024-09288-w] [PMID]
62. Zou S, Gou X, Wen K. Advances in the role of long non-coding RNAs and RNA-binding proteins in regulating DNA damage repair in cancer cells. Int J Mol Med 2023; 52: 93. [DOI:10.3892/ijmm.2023.5296] [PMID]
63. Deogharia M, Gurha P. The "guiding" principles of noncoding RNA function. Wiley Interdiscip Rev RNA 2022; 13: e1704. [DOI:10.1002/wrna.1704] [PMID]
64. Schmitt A, Garcia J, Hung T, Flynn R, Shen Y, Qu K, et al. An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet 2016; 48: 1370-1376. [DOI:10.1038/ng.3673] [PMID] [PMCID]
65. Shen L, Wang Q, Liu R, Chen Z, Zhang X, Zhou P, et al. LncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA. Nucleic Acids Res 2018; 46: 717-729. [DOI:10.1093/nar/gkx1224] [PMID] [PMCID]
66. Dianatpour A, Ghafouri-Fard S. The role of long non coding RNAs in the repair of DNA double strand breaks. Int J Mol Cell Med 2017; 6: 1-12.
67. Cui X, Wang Y, Fu J. DNA damage response and cell fate decisions across the lifespan: From fetal development to age-related respiratory diseases. Cell Biosci 2025; 15: 114. [DOI:10.1186/s13578-025-01442-6] [PMID] [PMCID]
68. Nejad S-RT, Khaki A, Abbasalizadeh S, Shokoohi M, Ainehchi N. Protective effect of hydroalcoholic extract of orange peel on PCNA and FSH-R gene expression in histological damage and oxidative stress due to ovarian torsion in adult rats. Int J Womens Health Reprod Sci 2021; 9: 205-211. [DOI:10.15296/ijwhr.2021.38]
69. Ebrahimi M, Fani M, Abtahi-Evari S-H, Brazvan B, Azin S, Shokoohi M, et al. The effect of Safranal on histological damages and oxidative stress induced by ischemia-reperfusion in adult rat ovaries. Physiol Pharmacol 2025; 29: 184-193. [DOI:10.61882/phypha.29.2.184]
70. Galas JF. Primary culture of ovarian cells for research on cell interactions in the hormonal control of steroidogenesis. Methods Mol Biol 2012; 806: 227-249. [DOI:10.1007/978-1-61779-367-7_16] [PMID]
71. Fallah N, Paktinat M, Rasouli M, Nabiuni M, Amini E. Optimized primary culture and subculture of granulosa cells. Pharm Biomed Res 2022; 8: 155-162. [DOI:10.18502/pbr.v8i2.11029]
72. Mohammadi Z, Hosseinianvari S, Ghazalian N, Fani M, Mahmudian AS, Brazvan B, et al. The impact of chrysin on the folliculogenesis and ovarian apoptosis in ischemia-reperfusion injury in the rat model. Int J Fertil Steril 2022; 16: 299.
73. Sahu SA, Shrivastava D. A comprehensive review of screening methods for ovarian masses: Towards earlier detection. Cureus 2023; 15: e48534. [DOI:10.7759/cureus.48534]
74. Occhipinti KA, Frankel SD, Hricak H. The ovary: Computed tomography and magnetic resonance imaging. Radiol Clin North Am 1993; 31: 1115-1132. [DOI:10.1016/S0033-8389(22)00359-1] [PMID]
75. Gulakar B, Sebin SO, Laloglu E, Tanyeli A, Güler MC, Erbas E, et al. New potential agent in ovarian ischemia reperfusion injury: Alpha pinene. J Biochem Mol Toxicol 2025; 39: e70318. [DOI:10.1002/jbt.70318] [PMID] [PMCID]
76. Tielli A, Scala A, Alison M, Vo Chieu VD, Farkas N, Titomanlio L, et al. Ovarian torsion: Diagnosis, surgery, and fertility preservation in the pediatric population. Eur J Pediatr 2022; 181: 1405-1411. [DOI:10.1007/s00431-021-04352-0] [PMID]
77. Baradaran Bagheri R, Khaki AA. Effects of carvacrol on hormonal and biochemical blood factors related to diabetes in diabetic adult rats induced by streptozocin. Med J Tabriz Univ Med Sci 2024; 46: 136-144. [DOI:10.34172/mj.2024.020]
78. Shokoohi M, Khaki AA, Roshangar L, Esfahani MHN, Soltani GG, Alihemmati A. The impact of N-acetylcysteine on hypoxia-induced testicular apoptosis in male rats: TUNEL and IHC findings. Heliyon 2024; 10: e40097. [DOI:10.1016/j.heliyon.2024.e40097] [PMID] [PMCID]
79. Nezhat FR, Cathcart AM, Nezhat CH, Nezhat CR. Pathophysiology and clinical implications of ovarian endometriomas. Obstet Gynecol 2024; 143: 759-766. [DOI:10.1097/AOG.0000000000005587] [PMID] [PMCID]
80. Lotz L, Schneider H, Hackl J, Wachter D, Hoffmann I, Jurgons R, et al. Does stimulation with human gonadotropins and gonadotropin-releasing hormone agonist enhance and accelerate the developmental capacity of oocytes in human ovarian tissue xenografted into severe combined immunodeficient mice? Fertil Steril 2014; 101: 1477-1484. [DOI:10.1016/j.fertnstert.2014.01.038] [PMID]
81. Floyd JL, Campbell S, Rauh-Hain JA, Woodard T. Fertility preservation in women with early-stage gynecologic cancer: Optimizing oncologic and reproductive outcomes. Int J Gynecol Cancer 2021; 31: 345-351. [DOI:10.1136/ijgc-2020-001328] [PMID] [PMCID]
82. Sleiman Z, Karaman E, Terzic M, Terzic S, Falzone G, Garzon S. Fertility preservation in benign gynecological diseases: Current approaches and future perspectives. J Reprod Iinfertil 2019; 20: 201.
83. Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, et al. Ovarian microenvironment: Challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30: 614-647. [DOI:10.1093/humupd/dmae020] [PMID] [PMCID]
84. Abbasi Habashi S. Mechanisms of collateral failure and neutrophil-mediated microvascular obstruction in ischemic stroke: Therapeutic interventions targeting reperfusion and neuroprotection [Ph.D. thesis]. University of Alberta; 2025.
85. Huang C, Hong MK, Ding DC. A review of ovary torsion. Tzu Chi Med J 2017; 29: 143-147. [DOI:10.4103/tcmj.tcmj_55_17] [PMID] [PMCID]
86. BULAT A-M. Ischemia-reperfusion injury in ovaries. The 8th International Medical Congress for Students and Young Doctors: Chisinau, Republic of Moldova; 2020 September 24-26.

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به International Journal of Reproductive BioMedicine می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb