Volume 13, Issue 11 (11-2015)                   IJRM 2015, 13(11): 679-686 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rastegar T, Habibi Roudkenar M, Parvari S, Baazm M. The interaction between Sertoli cells and luekemia inhibitory factor on the propagation and differentiation of spermatogonial stem cells in vitro. IJRM 2015; 13 (11) :679-686
URL: http://ijrm.ir/article-1-608-en.html
1- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
3- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
4- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran , dr.baazm@arakmu.ac.ir
Abstract:   (3419 Views)
Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.
Full-Text [PDF 788 kb]   (751 Downloads) |   |   Full-Text (HTML)  (397 Views)  
Type of Study: Original Article |

References
1. Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 1998; 9: 411-416. [DOI:10.1006/scdb.1998.0203]
2. Martin-du Pan R, Campana A. Physiopathology of spermatogenic arrest. Fertil Steril 1993; 60: 937-946. [DOI:10.1016/S0015-0282(16)56388-2]
3. Tesarik J, Balaban B, Isiklar A, Alatas C, Urman B, Aksoy S, et al. In-vitro spermatogenesis resumption in men with maturation arrest: relationship with in-vivo blocking stage and serum FSH. Hum Reprod 2000; 15: 1350-1354. [DOI:10.1093/humrep/15.6.1350]
4. Arkoun B, Dumont L, Milazzo J-P, Way A, Bironneau A, Wils J, et al. Retinol Improves In Vitro Differentiation of Pre-Pubertal Mouse Spermatogonial Stem Cells into Sperm during the First Wave of Spermatogenesis. PloS one 2015; 10: e0116660. [DOI:10.1371/journal.pone.0116660]
5. Johnson L, Thompson Jr DL, Varner DD. Role of Sertoli cell number and function on regulation of spermatogenesis. Anim Reprod Sci 2008; 105: 23-51. [DOI:10.1016/j.anireprosci.2007.11.029]
6. Griswold MD. Interactions between germ cells and Sertoli cells in the testis. Biol Reprod 1995; 52: 211-216. [DOI:10.1095/biolreprod52.2.211]
7. Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25: 747-806. [DOI:10.1210/er.2003-0022]
8. Ogawa T, Ohmura M, Ohbo K. The niche for spermatogonial stem cells in the mammalian testis. Int J Hematol 2005; 82: 381-388. [DOI:10.1532/IJH97.05088]
9. Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 2008; 9: 11-21. [DOI:10.1038/nrm2319]
10. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature 2001; 414: 98-104. [DOI:10.1038/35102160]
11. Godet M, Sabido O, Gilleron J, Durand P. Meiotic progression of rat spermatocytes requires mitogen-activated protein kinases of Sertoli cells and close contacts between the germ cells and the Sertoli cells. Dev Biol 2008; 315: 173-188. [DOI:10.1016/j.ydbio.2007.12.019]
12. Hofmann M-C. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol 2008; 288: 95-103. [DOI:10.1016/j.mce.2008.04.012]
13. Lamberti D, Vicini E. Promoter analysis of the gene encoding GDNF in murine Sertoli cells. Mol Cell Endocrinol 2014; 394: 105-114. [DOI:10.1016/j.mce.2014.07.006]
14. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 2004; 101: 16489-16494. [DOI:10.1073/pnas.0407063101]
15. Tesarik J, Guido M, Mendoza C, Greco E. Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. J Clin Endocrinol Metab 1998; 83: 4467-4473. [DOI:10.1210/jcem.83.12.5304]
16. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 2002; 113: 29-39. [DOI:10.1016/S0925-4773(02)00004-7]
17. Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Yoshida S, Toyokuni S, et al. Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture. Biol Reprod 2007; 76: 55-62. [DOI:10.1095/biolreprod.106.055863]
18. Dorval-Coiffec I, Delcros J-G, Hakovirta H, Toppari J, Jégou B, Piquet-Pellorce C. Identification of the leukemia inhibitory factor cell targets within the rat testis. Biol Reprod 2005; 72: 602-611. [DOI:10.1095/biolreprod.104.034892]
19. Langenstroth D, Kossack N, Westernströer B, Wistuba J, Behr R, Gromoll J, et al. Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Hum Reprod 2014; 29: 2018-2031. [DOI:10.1093/humrep/deu157]
20. Sisakhtnezhad S, Bahrami AR, Matin MM, Dehghani H, Momeni-Moghaddam M, Boozarpour S, et al. The molecular signature and spermatogenesis potential of newborn chicken spermatogonial stem cells in vitro. In Vitro Cell Dev Biol Anim 2015; 51: 415-425. [DOI:10.1007/s11626-014-9843-1]
21. Shinohara T, Avarbock MR, Brinster RL. β1-and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 1999; 96: 5504-5509. [DOI:10.1073/pnas.96.10.5504]
22. Scarpino S, Rita Morena A, Petersen C, Fröysa B, Söder O, Boitani C. A rapid method of Sertoli cell isolation by DSA lectin, allowing mitotic analyses. Mol Cell Endocrinol 1998; 146: 121-127. [DOI:10.1016/S0303-7207(98)00190-7]
23. Anway M, Folmer J, Wright W, Zirkin B. Isolation of Sertoli cells from adult rat testes: an approach to ex vivo studies of Sertoli cell function. Biol Reprod 2003; 68: 996-1002. [DOI:10.1095/biolreprod.102.008045]
24. Guan K, Wolf F, Becker A, Engel W, Nayernia K, Hasenfuss G. Isolation and cultivation of stem cells from adult mouse testes. Nat Protoc 2009; 4: 143-154. [DOI:10.1038/nprot.2008.242]
25. FU JX, Wang PJ, Zhang XH, Ju SG, Li J, Lp BZ, et al. Myeloma cells inhibit osteogenic differentiation of mesenchymal stem cells and kill osteoblasts via TRAIL-induced apoptosis. Arch Med Sci 2010; 6: 496-504.
26. Aslam I, Robins A, Dowell K, Fishel S. Isolation, purification and assessment of viability of spermatogenic cells from testicular biopsies of azoospermic men. Hum Reprod 1998; 13: 639-645. [DOI:10.1093/humrep/13.3.639]
27. Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000; 21: 776-798.
28. Wu J, Song W, Zhu H, Niu Z, Mu H, Lei A, et al. Enrichment and characterization of Thy1-positive male germline stem cells (mGSCs) from dairy goat (Capra hircus) testis using magnetic microbeads. Theriogenology 2013; 80: 1052-1060. [DOI:10.1016/j.theriogenology.2013.08.003]
29. Baazm M, Abolhassani F, Abbasi M, Habibi Roudkenar M, Amidi F, Beyer C. An Improved Protocol for Isolation and Culturing of Mouse Spermatogonial Stem Cells. Cell Reprog 2013; 15: 329-336.
30. Rastegar T, Minaee MB, Roudkenar MH, Kashani IR, Amidi F, Abolhasani F, et al. Improvement of expression of α6 and β1 Integrins by the co-culture of adult mouse spermatogonial stem cells with SIM mouse embryonic fibroblast cells (STO) and growth factors. Iran J Basic Med Sci 2013; 16: 134-139.
31. Aslam I, Fishel S, Moore H, Dowell K, Thornton S. Fertility preservation of boys undergoing anti-cancer therapy: a review of the existing situation and prospects for the future. Hum Reprod 2000; 15: 2154-2159. [DOI:10.1093/humrep/15.10.2154]
32. Singh SR, Burnicka‐Turek O, Chauhan C, Hou SX. Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 2011; 15: 468-483. [DOI:10.1111/j.1582-4934.2010.01242.x]
33. Mohamadi S, Movahedin M, Koruji S, Jafarabadi MA, Makoolati Z. Comparison of colony formation in adult mouse spermatogonial stem cells developed in Sertoli and STO coculture systems. Andrologia 2012; 44: 431-437. [DOI:10.1111/j.1439-0272.2011.01201.x]
34. Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A. Embryonic expression of glial cell-line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial-mesenchymal interactions. Mech Dev 1996; 54: 95-105. [DOI:10.1016/0925-4773(95)00464-5]
35. Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000; 287: 1489-1493. [DOI:10.1126/science.287.5457.1489]
36. Braydich-Stolle L, Kostereva N, Dym M, Hofmann M-C. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol 2007; 304: 34-45. [DOI:10.1016/j.ydbio.2006.12.013]
37. Pesce M, Farrace MG, Piacentini M, Dolci S, De Felici M. Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development 1993; 118: 1089-1094.
38. Tesarik J, Mendoza C, Anniballo R, Greco E. In-vitro differentiation of germ cells from frozen testicular biopsy specimens. Hum Reprod 2000; 15: 1713-1716. [DOI:10.1093/humrep/15.8.1713]
39. Miryounesi M, Nayernia K, Dianatpour M, Mansouri F, Modarressi MH. Co-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells. Iran J Basic Med Sci 2013; 16: 779-783.
40. Hue D, Staub C, Perrard-Sapori M-H, Weiss M, Nicolle J-C, Vigier M, et al. Meiotic differentiation of germinal cells in three-week cultures of whole cell population from rat seminiferous tubules. Biolo Reprod 1998; 59: 379-387. [DOI:10.1095/biolreprod59.2.379]
41. Yan W, Suominen J, Toppari J. Stem cell factor protects germ cells from apoptosis in vitro. J Cell Sci 2000; 113: 161-168.
42. Feng L-X, Chen Y, Dettin L, Pera RAR, Herr JC, Goldberg E, et al. Generation and in vitro differentiation of a spermatogonial cell line. Science 2002; 297: 392-395. [DOI:10.1126/science.1073162]
43. Tajima Y, Watanabe D, Koshimizu U, Matsuzawa T, Nishimune Y. Insulin‐like growth factor‐I and transforming growth factor‐α stimulate differentiation of type A spermatogonia in organ culture of adult mouse cryptorchid testes. Int J Androl 1995; 18: 8-12. [DOI:10.1111/j.1365-2605.1995.tb00928.x]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb