دوره 14، شماره 9 - ( 6-1395 )                   جلد 14 شماره 9 صفحات 576-567 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Esmaeli A, Moshrefi M, Shamsara A, Eftekhar-vaghefi S H, Nematollahi-mahani S N. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum. IJRM 2016; 14 (9) :567-576
URL: http://ijrm.ir/article-1-785-fa.html
اسماعیلی آزاده، مشرفی مژگان، شمس آرا علی، افتخار واقفی سیدحسن، نعمت اللهی ماهانی سید نورالدین. مقایسه اثر سرم خون بند ناف با FBS در تکثیر سلول‌های بنیادی مزانشیمی مغز استخوان و سلول های بنیادی مزانشیمی ماتریکس بند ناف. International Journal of Reproductive BioMedicine. 1395; 14 (9) :567-576

URL: http://ijrm.ir/article-1-785-fa.html


1- مرکز تحقیقات فیزیولوژی، پژوهشکده نوروفارماکولوژی، دانشگاه علوم پزشکی کرمان، کرمان، ایران
2- مرکز تحقیقات علوم اعصاب، پژوهشکده نوروفارماکولوژی، دانشگاه علوم پزشکی کرمان، کرمان، ایران
3- گروه علوم تشریحی، دانشکده پزشکی افضلی پور، دانشگاه علوم پزشکی کرمان، کرمان، ایران
4- مرکز تحقیقات فیزیولوژی، پژوهشکده نوروفارماکولوژی، دانشگاه علوم پزشکی کرمان، کرمان، ایران ، nnematollahi@kmu..ac.ir
چکیده:   (4085 مشاهده)
مقدمه: اگرچه سرم خون جنین گاو (FBS) به طور گسترده­ای در آزمایشگاه­های کشت سلول استفاده می­شود، اما خصوصیاتی از جمله خطر انتقال عفونت و اثرات جانبی حساسیت زا استفاده آن را جهت کشت سلول­ها برای مصارف بالینی محدود کرده است. بنابراین تقاضا برای یک مکمل جایگزین با قابلیت کمک به رشد و تکثیر سلول­ها وجود دارد.
هدف: جهت یافتن یک جایگزین مناسب برای FBS، این تحقیق به مقایسه قابلیت سرم خون بندناف با FBS در تکثیر سلول­های بنیادی مزانشیمی مغز استخوان (BMMCs) و سلول­های بنیادی مزانشیمی ماتریکس بند ناف (hUCMCs) پرداخته است.
مواد و روش­ها: خون بند ناف نوزادان سالم متولد شده به روش سزارین جمع آوری و سرم خون بند ناف جدا شد. سلول­های بنیادی مزانشیمی مغز استخوان و سلول­های بنیادی مزانشیمی ماتریکس بند ناف با بررسی مارکرهای سطحی توسط فلوسایتومتری، بررسی آلکالین فسفاتاز درون سلولی و تمایز به سلول­های استخوانی و چربی شناسایی شدند. هر کدام از سلول­های جدا شده در سه گروه جداگانه در محیط Iscove's Modified Dulbecco's Media (IMDM) کشت داده شدند. گروه­ها عبارت بودند از: 1) کشت سلول ها با سرم خون بند ناف. 2) کشت سلول­ها با FBS. 3) کشت سلول­ها بدون افزودن سرم. تکثیر   سلول­ها به کمک معرف WST-1 و رنگ آمیزی تریپان بلو بررسی شد..
نتایج: سلول­های گروه اول و دوم از نظر مرفولوژی و بروز خصوصیات سلول­های بنیادی مزانشیمی شبیه به هم بودند و نتایج حاصل از ارزیابی WST-1 و رنگ­آمیزی تریپان بلو تفاوت معنی­داری بین تکثیر سلول­های کشت داده شده در حضور سرم خون بند ناف و FBS نشان نداد اما تفاوت معنی­داری بین تکثیر سلول­ها در گروه­های دارای سرم و گروه بدون سرم مشاهده شد.
نتیجه­ گیری: نتایج این تحقیق نشان داد که سرم خون بند ناف انسان می­تواند به طرز مؤثری تکثیر سلول­های بنیادی مزانشیمی مغز استخوان و سلول­های بنیادی مزانشیمی ماتریکس بند ناف را در محیط آزمایشگاه پشتیبانی کند و به عنوان یک جایگزین مناسب در مطالعات بالینی به کار رود.
نوع مطالعه: Original Article |

فهرست منابع
1. Walther G, Gekas J, Bertrand OF. Amniotic stem cells for cellular cardiomyoplasty: promises and premises. Catheter Cardiovasc Int 2009; 73: 917-924. [DOI:10.1002/ccd.22016]
2. Shetty P, Cooper K, Viswanathan C. Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells. Asian J Transfus Sci 2010; 4: 14-24. [DOI:10.4103/0973-6247.59386]
3. Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, Ali AM, Omar AR, Janzamin E, et al. Effect of culture media on expansion properties of human umbilical cord matrix-derived mesenchymal cells. Cytotherapy 2012; 14: 948-953. [DOI:10.3109/14653249.2012.684377]
4. Lindroos B, Aho KL, Kuokkanen H, Raty S, Miettinen S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng Part A 2010; 16: 2281-2294. [DOI:10.1089/ten.tea.2009.0621]
5. He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Ann Rev cell Dev Biol 2009; 25: 377-406. [DOI:10.1146/annurev.cellbio.042308.113248]
6. Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 2005; 23: 1357-1366. [DOI:10.1634/stemcells.2005-0094]
7. Latifpour M, Nematollahi-Mahani SN, Deilamy M, Azimzadeh BS, Eftekhar-Vaghefi SH, Nabipour F, et al. Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells. Cardiology 2011; 120: 9-18. [DOI:10.1159/000332581]
8. Aghaee-Afshar M, Rezazadehkermani M, Asadi A, Malekpour-Afshar R, Shahesmaeili A, Nematollahi-mahani SN. Potential of human umbilical cord matrix and rabbit bone marrow-derived mesenchymal stem cells in repair of surgically incised rabbit external anal sphincter. Dis Colon Rectum 2009; 52: 1753-1761. [DOI:10.1007/DCR.0b013e3181b55112]
9. Lu LL, Song YP, Wei XD, Fang BJ, Li YF. Comparative characterization of mesenchymal stem cells from human umbilical cord tissue and bone marrow. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2008; 16: 140-146.
10. Ryan JM. Effect of different fetal bovine serum concentrations on the replicative life span of cultured chick cells. In Vitro 1979; 15: 895-899. [DOI:10.1007/BF02618046]
11. Fong CY, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Rep 2011; 7: 1-16. [DOI:10.1007/s12015-010-9166-x]
12. Meuleman N, Tondreau T, Delforge A, Dejeneffe M, Massy M, Libertalis M, et al. Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. Eur J Haematol 2006; 76: 309-316. [DOI:10.1111/j.1600-0609.2005.00611.x]
13. Rahman H, Qasim M, Schultze FC, Oellerich M, A RA. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome. Proteome Sci 2011; 9: 71. [DOI:10.1186/1477-5956-9-71]
14. Phadnis SM, Joglekar MV, Venkateshan V, Ghaskadbi SM, Hardikar AA, Bhonde RR. Human umbilical cord blood serum promotes growth, proliferation, as well as differentiation of human bone marrow-derived progenitor cells. In Vitro Cell Dev Biol Anim 2006; 42: 283-286. [DOI:10.1290/0512087]
15. Nakamura T, Inatomi T, Sotozono C, Anq L, Kinoshita S. Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology 2006; 113: 1765-1772. [DOI:10.1016/j.ophtha.2006.04.030]
16. Heike T, Nakahata T. Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta 2002; 1592: 313-321. [DOI:10.1016/S0167-4889(02)00324-5]
17. van Hensbergen Y, Schipper LF, Brand A, Slot MC, Welling M, Nauta AJ, et al. Ex vivo culture of human CD34+ cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model. Exp Hematol 2006; 34: 943-950. [DOI:10.1016/j.exphem.2006.04.009]
18. Lindroos B, Aho KL, Kuokkanen H, Raty S, Huhtala H, Lemp1n R, et al. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng Part A 2010; 16: 2281-2294. [DOI:10.1089/ten.tea.2009.0621]
19. Nimura A, Muneta T, Koga H, Mochizuki T, Suzuki K, Makino H, et al. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum 2008; 58: 501-510. [DOI:10.1002/art.23219]
20. Perez-Ilzarbe M, Diez-Campelo M, Aranda P, Tabera S, Lopez T, del Canizo C, et al. Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy. Transfusion 2009; 49: 1901-1910. [DOI:10.1111/j.1537-2995.2009.02226.x]
21. Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS One 2010; 5: e10246. [DOI:10.1371/journal.pone.0010246]
22. Mellado-Damas N, Rodriguez JM, Carmona M, Gonzalez J, Prieto J. Ex-vivo expansion and maturation of CD34-positive hematopoietic progenitors optimization of culture conditions. Leuk Res 1999; 23: 1035-1040. [DOI:10.1016/S0145-2126(99)00126-5]
23. Eslaminejad MB, Rouhi L, Najafi SMA, Baharvand H. [Culture of rat mesenchymal stem cell using peripheral blood-derived plasma as the culture medium supplement]. Sci J Blood Tras Org (Khoon) 2008; 5: 25-37. (In Persian)
24. Salehinejad P, Alitheen NB, Ali AM, Omar AR, Mohit M, Janzamin E, et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly. In Vitro Cell Dev Biol Anim 2012; 48: 75-83. [DOI:10.1007/s11626-011-9480-x]
25. Motamedi B, Ibrahim TAT, Abdul AB, Allaudin ZA, Moshrefi M, Hajghani M, Nematollahi-Mahani SN. Characteristics of human amniotic epithelial cells and bone marrow mesenchymal stem cells in a parallel study: hanging drop colony formation and doubling time. J Regen Med 2015; 4: 2-10.
26. Nematollahi-mahani SN, Rezazadeh-kermani M, Mehrabani M, Nakhaee N. Cytotoxic effects of Tecurium polium on some established cell lines. Pharm Biol 2007; 45: 295-298. [DOI:10.1080/13880200701214904]
27. Hou T, Xu J, Wu X, Xie Z, Luo F, Zhang Z, et al. Umbilical cord Wharton's Jelly: a new potential cell source of mesenchymal stromal cells for b1 tissue engineering. Tissue Eng Part A 2009; 15: 2325-2334. [DOI:10.1089/ten.tea.2008.0402]
28. Shetty P, Bharucha K, Tanavde V. Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesenchymal stem cells. Cell Biol Int 2007; 31: 293-298. [DOI:10.1016/j.cellbi.2006.11.010]
29. Chakraborty A, Dutta J, Das S, Datta H. Effect of cord blood serum on ex vivo human limbal epithelial cell culture. J Ocul Biol Diseases Inform 2012; 5: 77-82. [DOI:10.1007/s12177-013-9106-5]
30. Shetty P, Viswanathan C. Growth of neural precursor cells using umbilical cord blood serum and a process for the preparation for therapeutic purposes. Google Patents; 2011.
31. Aldahmash A, Haack-Sørensen M, Al-Nbaheen M, Harkness L, Abdallah BM, Kassem M. Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivo. Stem Cell Rev Rep 2011; 7: 860-868. [DOI:10.1007/s12015-011-9274-2]
32. Tateishi K, Ando W, Higuchi C, Hart D, Hashimoto J, Nakata K, et al. Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant 2008; 17: 549-557. [DOI:10.3727/096368908785096024]
33. Choi J, Chung J-H, Kwon G-Y, Kim K-W, Kim S, Chang H. Effectiveness of autologous serum as an alternative to fetal bovine serum in adipose-derived stem cell engineering. Cell Tissue Bank 2013; 14: 413-422. [DOI:10.1007/s10561-012-9341-1]
34. Gallo R, Gambelli F, Gava B, Sasdelli F, Tell1 V, Masini M, et al. Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death Differentiation 2007; 14: 1860-1871. [DOI:10.1038/sj.cdd.4402199]
35. Paranjape S. Goat serum: an alternative to fetal bovine serum in biomedical research. Indian J Exp Biol 2004; 42: 26-35.
36. Handin RI, Lux SE, Stossel TP. Blood: principles and practice of hematology: Lippincott Williams & Wilkins; 2003.
37. Bieback K, Ha VA-T, Hecker A, Grassl M, Kinzebach S, Solz H, et al. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements. Tissue Eng Part A 2010; 16: 3467-3484. [DOI:10.1089/ten.tea.2009.0727]
38. Van der Valk J, Mellor D, Brands R, Fischer R, Gruber F, Gstraunthaler G, et al. The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicol Invitro 2004; 18: 1-12. [DOI:10.1016/j.tiv.2003.08.009]
39. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bullet 1996; 19: 1518-1520. [DOI:10.1248/bpb.19.1518]
40. Weiss ML, Mitchell KE, Hix JE, Medicetty S, El-Zarkouny SZ, Grieger D, et al. Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol 2003; 182: 288-299. [DOI:10.1016/S0014-4886(03)00128-6]
41. Matsuda J, Yokota I, Iida M, Murakami T, Naito E, Ito M, et al. Serum leptin concentration in cord blood: relationship to birth weight and gender. J Clin Endocrinol Metab 1997; 82: 1642-1644. [DOI:10.1210/jcem.82.5.4063]
42. Lian R Gao, Yu Chen, Ning K Zhang, Xi L Yang, Hui L Liu, Zhi G Wang, et al. Intracoronary infusion of Wharton's jelly-derived mesenchymal stem cells in acute myocardial infarction: double- blind, randomized controlled trial. BMC Med 2015; 13: 162 [DOI:10.1186/s12916-015-0399-z]

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به International Journal of Reproductive BioMedicine می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb