Volume 15, Issue 1 (1-2017)                   IJRM 2017, 15(1): 21-32 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafarabadi M, Salehnia M, Sadafi R. Evaluation of two endometriosis models by transplantation of human endometrial tissue fragments and human endometrial mesenchymal cells. IJRM 2017; 15 (1) :21-32
URL: http://ijrm.ir/article-1-791-en.html
1- Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran. , Jafarabadi@tums.ac.ir
2- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
Abstract:   (2689 Views)
Background: The animal models of endometriosis could be a valuable alternative tool for clarifying the etiology of endometriosis.
Objective: In this study two endometriosis models at the morphological and molecular levels was evaluated and compared.
Materials and Methods: The human endometrial tissues were cut into small fragments then they were randomly considered for transplantation into γ irradiated mice as model A; or they were isolated and cultured up to fourth passages. 2×106 cultured stromal cells were transplanted into γ irradiated mice subcutaneously as model B. twenty days later the ectopic tissues in both models were studied morphologically by Periodic acid-Schiff and hematoxylin and eosin staining. The expression of osteopontin (OPN) and matrix metalloproteinase 2 (MMP2) genes were also assessed using real time RT-PCR. 17-β estradiol levels of mice sera were compared before and after transplantation.
Results: The endometrial like glands and stromal cells were formed in the implanted subcutaneous tissue of both endometriosis models. The gland sections per cubic millimeter, the expression of OPN and MMP2 genes and the level of 17-β estradiol were higher in model B than model A (p=0.03).
Conclusion: Our observation demonstrated that endometrial mesenchymal stromal cells showed more efficiency to establish endometriosis model than human endometrial tissue fragments
Full-Text [PDF 709 kb]   (973 Downloads) |   |   Full-Text (HTML)  (455 Views)  
Type of Study: Original Article |

References
1. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril 2012; 98: 511-519. [DOI:10.1016/j.fertnstert.2012.06.029]
2. Bulun SE, Yang S, Fang Z, Gurates B, Tamura M, Sebastian S. Estrogen production and metabolism in endometriosis. Ann N Y Acad Sci 2002; 955:75-85. [DOI:10.1111/j.1749-6632.2002.tb02767.x]
3. Abu Hashim H. Potential role of aromatase inhibitors in the treatment of endometriosis. Int J Womens Health 2014; 6: 671-680. [DOI:10.2147/IJWH.S34684]
4. Platteeuw L, D'Hooghe T. Novel agents for the medical treatment of endometriosis. Curr Opin Obstet Gynecol 2014; 26: 243-252. [DOI:10.1097/GCO.0000000000000084]
5. Felix Wong WS, Danforn Lim CE. Hormonal treatment for endometriosis associated pelvic pain. Iran J Reprod Med 2011; 9: 163-170.
6. Ghahiri A, Najafian A, Ghasemi M, Najafian A. Comparison study on effectiveness of pentoxifyllin with LD to prevent recurrent endometriosis. Iran J Reprod Med 2012; 10: 219-222.
7. Edwards AK, Nakamura DS, Virani S, Wessels JM, Tayade C. Animal models for anti-angiogenic therapy in endometriosis. J Reprod Immunol 2013; 97: 85-94. [DOI:10.1016/j.jri.2012.10.012]
8. Bruner-Tran KL, Webster-Clair D, Osteen KG. Experimental endometriosis: the nude mouse as a xenographic host. Ann N Y Acad Sci 2002; 955: 328-339. [DOI:10.1111/j.1749-6632.2002.tb02793.x]
9. Colette S, Defrere S, Lousse JC, Van Langendonckt A, Loumaye E, Donnez J. Evaluation of estrogen treatment in an immunodeficient mouse endometriosis model. Gynecol Obstetric Invest 2009; 68: 262-268. [DOI:10.1159/000240672]
10. Grummer R. Animal models in endometriosis research. Hum Reprod Update 2006; 12: 641-649. [DOI:10.1093/humupd/dml026]
11. Mohammadzadeh A, Heidari M, Soltan Ghoraii H, Zarnani AM, Ghaffari Novin M, Akhondi M, et al. Induction of Endometriosis by implantation of endometrial fragments in female rats. Iran J Reprod Med 2006; 4: 2.
12. Tirado-Gonzalez I, Barrientos G, Tariverdian N, Arck PC, Garcia MG, Klapp BF, et al. Endometriosis research: animal models for the study of a complex disease. J Reprod Immunol 2010; 86: 141-147. [DOI:10.1016/j.jri.2010.05.001]
13. Pelch KE, Schroder AL, Kimball PA, Sharpe-Timms KL, Davis JW, Nagel SC. Aberrant gene expression profile in a mouse model of endometriosis mirrors that observed in women. Fertil Steril 2010; 93: 1615-1627. [DOI:10.1016/j.fertnstert.2009.03.086]
14. Agic A, von Wussow U, Starzinski-Powitz A, Diedrich K, Altevogt P, Hornung D. Inhibition of cell proliferation, adhesion, and invasion with an anti-L1-cell adhesion molecule monoclonal antibody in an in vitro endometriosis model. Fertil Steril 2010; 94: 1102-1104. [DOI:10.1016/j.fertnstert.2009.11.050]
15. Delbandi AA, Mahmoudi M, Shervin A, Akbari E, Jeddi-Tehrani M, Sankian M, et al. Eutopic and ectopic stromal cells from patients with endometriosis exhibit differential invasive, adhesive, and proliferative behavior. Fertil Steril 2013; 100: 761-769. [DOI:10.1016/j.fertnstert.2013.04.041]
16. Young VJ, Brown JK, Maybin J, Saunders PT, Duncan WC, Horne AW. Transforming growth factor-beta induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J Clin Endocrinol Metab 2014; 99: 3450-3459. [DOI:10.1210/jc.2014-1026]
17. Silveira CG, Finas D, Hunold P, Koster F, Stroschein K, Canny GO, et al. L1 cell adhesion molecule as a potential therapeutic target in murine models of endometriosis using a monoclonal antibody approach. PloS One 2013; 8: e82512. [DOI:10.1371/journal.pone.0082512]
18. Lessey BA, Damjanovich L, Coutifaris C, Castelbaum A, Albelda SM, Buck CA. Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. J Clin Invest 1992; 90: 188-195. [DOI:10.1172/JCI115835]
19. Casals G, Ordi J, Creus M, Fabregues F, Carmona F, Casamitjana R, et al. Expression pattern of osteopontin and alphavbeta3 integrin during the implantation window in infertile patients with early stages of endometriosis. Hum Reprod 2012; 27:805-813. [DOI:10.1093/humrep/der432]
20. Chung HW, Wen Y, Chun SH, Nezhat C, Woo BH, Lake Polan M. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-3 mRNA expression in ectopic and eutopic endometrium in women with endometriosis: a rationale for endometriotic invasiveness. Fertil Steril 2001; 75: 152-159. [DOI:10.1016/S0015-0282(00)01670-8]
21. Gaide Chevronnay HP, Selvais C, Emonard H, Galant C, Marbaix E, Henriet P. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta 2012; 1824: 146-156. [DOI:10.1016/j.bbapap.2011.09.003]
22. Apparao KB, Murray MJ, Fritz MA, Meyer WR, Chambers AF, Truong PR, et al. Osteopontin and its receptor alphavbeta (3) integrin are coexpressed in the human endometrium during the menstrual cycle but regulated differentially. J Clin Endocrinol Metabol 2001; 86: 4991-5000.
23. Goldman S, Shalev E. The role of the matrix metalloproteinases in human endometrial and ovarian cycles. Eur J Obstet Gynecol Reprod Biol 2003; 111: 109-121. [DOI:10.1016/S0301-2115(03)00341-5]
24. Londero AP, Calcagno A, Grassi T, Marzinotto S, Orsaria M, Beltrami CA, et al. Survivin, MMP-2, MT1-MMP, and TIMP-2: their impact on survival, implantation, and proliferation of endometriotic tissues. Virchows Arch 2012; 461: 589-599. [DOI:10.1007/s00428-012-1301-4]
25. Liu H, Wang J, Wang H, Tang N, Li Y, Zhang Y, Hao T. Correlation between matrix metalloproteinase-9 and endometriosis. Int J Clin Exp Pathol 2015; 8: 13399-13404.
26. Curry TE, Jr., Osteen KG. Cyclic changes in the matrix metalloproteinase system in the ovary and uterus. Biol Reprod 2001; 64: 1285-1296. [DOI:10.1095/biolreprod64.5.1285]
27. D'Amico F, Skarmoutsou E, Quaderno G, Malaponte G, La Corte C, Scibilia G, et al. Expression and localisation of osteopontin and prominin-1 (CD133) in patients with endometriosis. Int J Mol Med 2013; 31: 1011-1016. [DOI:10.3892/ijmm.2013.1325]
28. Cho S, Ahn YS, Choi YS, Seo SK, Nam A, Kim HY, et al. Endometrial osteopontin mRNA expression and plasma osteopontin levels are increased in patients with endometriosis. Am J Reprod Immunol 2009; 61: 286-293. [DOI:10.1111/j.1600-0897.2009.00692.x]
29. Malvezzi H, Aguiar VG, Paz CC, Tanus-Santos JE, Penna IA, Navarro PA. Increased circulating MMP-2 levels in infertile patients with moderate and severe pelvic endometriosis. Reprod Sci 2013; 20: 557-262. [DOI:10.1177/1933719112459234]
30. Mei J, Jin LP, Ding D, Li MQ, Li DJ, Zhu XY. Inhibition of IDO1 suppresses cyclooxygenase-2 and matrix metalloproteinase-9 expression and decreases proliferation, adhesion and invasion of endometrial stromal cells. Mol Hum Reprod 2012; 18: 467-476. [DOI:10.1093/molehr/gas021]
31. Wei Q, St Clair JB, Fu T, Stratton P, Nieman LK. Reduced expression of biomarkers associated with the implantation window in women with endometriosis. Fertil Steril 2009; 91: 1686-1691. [DOI:10.1016/j.fertnstert.2008.02.121]
32. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 2004; 70: 1738-1750. [DOI:10.1095/biolreprod.103.024109]
33. Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril 2005; 84: 1124-1130. [DOI:10.1016/j.fertnstert.2005.02.056]
34. Djokovic D, Calhaz-Jorge C. Somatic stem cells and their dysfunction in endometriosis. Front Surg 2014; 1: 51.
35. Oliveira FR, Dela Cruz C, Del Puerto HL, Vilamil QT, Reis FM, Camargos AF. Stem cells: are they the answer to the puzzling etiology of endometriosis? Histol Histopathol 2012; 27: 23-29.
36. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci 2008; 1127: 106-115. [DOI:10.1196/annals.1434.014]
37. Maruyama T, Yoshimura Y. Stem cell theory for the pathogenesis of endometriosis. Front Biosci 2012; 4: 2854-2863. [DOI:10.2741/e589]
38. Cervello I, Mas A, Gil-Sanchis C, Peris L, Faus A, Saunders PT, et al. Reconstruction of endometrium from human endometrial side population cell lines. PloS One 2011; 6: e21221. [DOI:10.1371/journal.pone.0021221]
39. Miyazaki K, Maruyama T, Masuda H, Yamasaki A, Uchida S, Oda H, et al. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay. PloS One 2012; 7: e50749. [DOI:10.1371/journal.pone.0050749]
40. Indumathi S, Harikrishnan R, Rajkumar JS, Sudarsanam D, Dhanasekaran M. Prospective biomarkers of stem cells of human endometrium and fallopian tube compared with bone marrow. Cell Tissue Res 2013; 352: 537-349. [DOI:10.1007/s00441-013-1582-1]
41. Heidari-Keshel S, Rezaei-Tavirani M, Ai J, Soleimani M, Baradaran-Rafii A, Ebrahimi M, et al. Tissue-specific somatic stem-cell isolation and characterization from human endometriosis. Key roles in the initiation of endometrial proliferative disorders. Minerva Medica 2015; 106: 95-108.
42. Li T, He H, Liu R, Wang SX, Pu DM. Isolation and identification of epithelial and stromal stem cells from eutopic endometrium of women with endometriosis. Eur J Obstet Gynecol Reprod Biol 2014; 178: 89-94. [DOI:10.1016/j.ejogrb.2014.04.001]
43. Wang J, Ma X. Effects of estrogen and progestin on expression of MMP-2 and TIMP-2 in a nude mouse model of endometriosis. Clin Exp Obstet Gynecol 2012; 39: 229-233.
44. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 2009; 80: 1136-1145. [DOI:10.1095/biolreprod.108.075226]
45. Fayazi M, Salehnia M, Ziaei S. Differentiation of human CD146-positive endometrial stem cells to adipogenic-, osteogenic-, neural progenitor-, and glial-like cells. In Vitro Cell Dev Biol Anim 2015; 51: 408-414. [DOI:10.1007/s11626-014-9842-2]
46. Fayazi M, Salehnia M, Ziaei S. Characteristics of human endometrial stem cells in tissue and isolated cultured cells: An Immunohistochemical Aspect. Iran Biomed J 2016; 20: 109-116.
47. Klug CA, Jordan C. Hematopoietic stem cells protocols. Hummana Press Inc. Totowa, New Jersey, 2002; 155-160.
48. Liu H, Wang J, Wang H, Tang N, Li Y, Zhang Y, Hao T. Correlation between matrix metalloproteinase-9 and endometriosis. Int J Clin Exp Pathol 2015; 8: 13399-13404.
49. Ferrero S, Remorgida V, Maganza C, Venturini PL, Salvatore S, Papaleo E, et al. Aromatase and endometriosis: estrogens play a role. Ann N Y Acad Sci 2014; 1317: 17-23. [DOI:10.1111/nyas.12411]
50. Bulun SE, Zeitoun K, Takayama K, Noble L, Michael D, Simpson E, et al. Estrogen production in endometriosis and use of aromatase inhibitors to treat endometriosis. Endocr Relat Cancer 1999; 6: 293-301 [DOI:10.1677/erc.0.0060293]
51. Konno R, Fujiwara H, Netsu S, Odagiri K, Shimane M, Nomura H, et al. Gene expression profiling of the rat endometriosis model. Am J Reprod Immunol 2007; 58: 330-343. [DOI:10.1111/j.1600-0897.2007.00507.x]
52. Jiao L, Qi X, Lu G, Zhang Q, Zhang C, Gao J. Effect of traditional Chinese medicine (Xiaochaihu Tang) on the expression of MMP-2 and MMP-9 in rats with endometriosis. Exp Ther Med 2013; 6: 1385-1389. [DOI:10.3892/etm.2013.1316]
53. Flores I, Rivera E, Ruiz LA, Santiago OI, Vernon MW, Appleyard CB. Molecular profiling of experimental endometriosis identified gene expression patterns in common with human disease. Fertil Steril 2007; 87: 1180- 1199. [DOI:10.1016/j.fertnstert.2006.07.1550]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb