Volume 15, Issue 5 (6-2017)                   IJRM 2017, 15(5): 257-264 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Faramarzi A, Khalili M A, Micara G, Agha- Rahimi A. Revealing the secret life of pre-implantation embryos by time-lapse monitoring: A review. IJRM 2017; 15 (5) :257-264
URL: http://ijrm.ir/article-1-827-en.html
1- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , khalili59@hotmail.com
3- Department of Obstetrics and Gynecology, UOC OGC03 Infertility and IVF University of Rome La Sapienza, Viale Regina Elena 324-00161 Rome
Abstract:   (3125 Views)
High implantation success following in vitro fertilization cycles are achieved via thetransfer of embryos with the highest developmental competence. Multiplepregnancies as a result of the transfer of several embryos per cycle accompany withvarious complication. Thus, single-embryo transfer (SET) is the preferred practice inassisted reproductive technique (ART) treatment. In order to improve the pregnancyrate for SET, embryologists need reliable biomarkers to aid their selection ofembryos with the highest developmental potential. Time-lapse technology is anoninvasive alternative conventional microscopic assessment. It providesuninterrupted and continues the survey of embryo development to transfer day.Today, there are four time-lapse systems that are commercially available for ARTcenters. In world and Iran, the first time lapse babies were born in 2010 and 2015,respectively, conceived by SET. Here, we review the use of time-lapse monitoring inthe observation of embryogenesis as well as its role in SET. Although, the findingsfrom our review support common use of time-lapse monitoring in ART centers; but,future large studies assessing this system in well-designed trials are necessary
Full-Text [PDF 320 kb]   (672 Downloads) |   |   Full-Text (HTML)  (499 Views)  
Type of Study: Original Article |

References
1. Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet 2105; 32: 1025-1030. [DOI:10.1007/s10815-015-0510-6]
2. Faramarzi A, Khalili MA, Ashourzadeh S. Oocyte morphology and embryo morphokinetics in ICSI program: is there a relationship? Zygote 2017; 25: 190-196. [DOI:10.1017/S0967199417000041]
3. Meldrum DR. Introduction: nongenetic markers of oocyte and embryo competence. Fertil Steril 2015; 103: 301-302. [DOI:10.1016/j.fertnstert.2014.12.117]
4. Massip A, Mulnard J. Time-lapse cinematographic analysis of hatching of normal and frozen-thawed cow blastocysts. J Reprod Fertil 1980; 58: 475-478. [DOI:10.1530/jrf.0.0580475]
5. Massip A, Mulnard J, Vanderzwalmen P, Hanzen C, Ectors F. The behaviour of cow blastocyst in vitro: cinematographic and morphometric analysis. J Anat 1982; 134: 399-405.
6. Finn A, Scott L, O'Leary T, Davies D, Hill J. Sequential embryo scoring as a predictor of aneuploidy in poor-prognosis patients. Reprod Biomed Online 2010; 21: 381-390. [DOI:10.1016/j.rbmo.2010.05.004]
7. Motato Y, de los Santos MJ, Escriba MJ, Ruiz BA, Remohí J, Meseguer M. Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil Steril 2016; 105: 376-384. [DOI:10.1016/j.fertnstert.2015.11.001]
8. Armstrong S, Arroll N, Cree LM, Jordan V, Farquhar C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev 2015; 2: Cd011320. [DOI:10.1002/14651858.CD011320.pub2]
9. Desai N, Ploskonka S, Goodman LR, Austin C, Goldberg J, Falcone T. Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod Biol Endocrinol 2014; 12: 54. [DOI:10.1186/1477-7827-12-54]
10. Keel BA, May JV, De Jonge CJ. Handbook of the assisted reproduction laboratory. CRC Press; 2000. [DOI:10.1201/b14247]
11. Chen AA, Tan L, Suraj V, Pera RR, Shen S. Biomarkers identified with time-lapse imaging: discovery, validation, and practical application. Fertil Steril 2013; 99: 1035-1043. [DOI:10.1016/j.fertnstert.2013.01.143]
12. Grady R, Alavi N, Vale R, Khandwala M, McDonald SD. Elective single embryo transfer and perinatal outcomes: a systematic review and meta-analysis. Fertil Steril 2012; 97: 324-331. [DOI:10.1016/j.fertnstert.2011.11.033]
13. Practice Committee of the American Society for Reproductive Medicine. Multiple gestation associated with infertility therapy: an American Society for Reproductive Medicine Practice Committee opinion. Fertil Steril 2012; 97: 825-834. [DOI:10.1016/j.fertnstert.2011.11.048]
14. Seli E, Robert C, Sirard MA. OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod 2010; 16: 513-530. [DOI:10.1093/molehr/gaq041]
15. Kirkegaard K, Agerholm IE, Ingerslev HJ. Time-lapse monitoring as a tool for clinical embryo assessment. Hum Reprod 2012; 27: 1277-1285. [DOI:10.1093/humrep/des079]
16. Chamayou S, Patrizio P, Storaci G, Tomaselli V, Alecci C, Ragolia C, et al. The use of morphokinetic parameters to select all embryos with full capacity to implant. J Assist Reprod Genet 2013, 30: 703-710. [DOI:10.1007/s10815-013-9992-2]
17. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril 2013; 100: 412-419. [DOI:10.1016/j.fertnstert.2013.04.021]
18. Dar S, Lazer T, Shah PS, Librach CL. Neonatal outcomes among singleton births after blastocyst versus cleavage stage embryo transfer: a systematic review and meta-analysis. Hum Repord Update 2014; 0: 1-10. [DOI:10.1093/humupd/dmu001]
19. Källén B, Finnström O, Lindam A, Nilsson E, Nygren, KG, Olausson PO. Blastocyst versus cleavage stage transfer in in vitro fertilization: differences in neonatal outcome? Fertil Steril 2010; 94: 1680-1683. [DOI:10.1016/j.fertnstert.2009.12.027]
20. Liu Y, Chapple V, Roberts P, Matson P. Prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil Steril 2014; 102: 1295-1300. [DOI:10.1016/j.fertnstert.2014.07.1235]
21. Milewski R, Kuc P, Kuczynska A, Stankiewicz B, Lukaszuk K, Kuczynski W. A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. J Assist Reprod Genet 2015; 32: 571-579. [DOI:10.1007/s10815-015-0440-3]
22. Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, Enciso M, et al. The origin and impact of embryonic aneuploidy. Hum Genet 2013; 132: 1001-1013. [DOI:10.1007/s00439-013-1309-0]
23. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using ananeuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online 2013; 27: 140-146. [DOI:10.1016/j.rbmo.2013.04.013]
24. Daughtry BL, Chavez SL. Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 2016; 363: 201-225. [DOI:10.1007/s00441-015-2305-6]
25. Chawla M, Fakih M, Shunnar A, Bayram A, Hellani A, Perumal V, et al. Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J Assist Reprod Genet 2015; 32: 69-75. [DOI:10.1007/s10815-014-0372-3]
26. Kramer YG, Kofinas JD, Melzer K, Noyes N, McCaffrey C,Buldo-Licciardi J, et al. Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal? J Assist Reprod Genet 2014; 31: 1231-1242. [DOI:10.1007/s10815-014-0285-1]
27. Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update 2015; 21; 727-747. [DOI:10.1093/humupd/dmu064]
28. Campbell A, Fishel S. Atlas of Time Lapse Embryology. CRC Press; 2015. [DOI:10.1201/b18006]
29. Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertil Steril 2016; 105: 656-662. [DOI:10.1016/j.fertnstert.2015.11.003]
30. Storr A, Venetis CA, Cooke S, Susetio D, Kilani S, Ledger W. Morphokinetic parameters using time-lapse technology and day 5 embryo quality: a prospective cohort study. J Assist Reprod Genet 2015; 32: 1151-1160. [DOI:10.1007/s10815-015-0534-y]
31. Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, et al. Dynamic blastomere behavior reflects human embryo ploidy by the four-cell stage. Nat Commun 2012; 3: 1251. [DOI:10.1038/ncomms2249]
32. Paternot G, Debrock S, De Neubourg D, D'Hooghe TM, Spiessens C. Semi-automated morphometric analysis of human embryos can reveal correlations between total embryo volume and clinical pregnancy. Hum Reprod 2013; 28: 627-633. [DOI:10.1093/humrep/des427]
33. VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M & et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod BioMed Online 2014; 29: 729-736. [DOI:10.1016/j.rbmo.2014.09.005]
34. Kirkegaard K, Campbell A, Agerholm I, Bentin-Ley U, Gabrielsen A, Kirk J, et al. Limitations of a time-lapse blastocyst prediction model: a large multicentre outcome analysis. Reprod BioMed Online 2014; 29: 156-158. [DOI:10.1016/j.rbmo.2014.04.011]
35. Cruz M, Gadea B, Garrido N, Pedersen KS, Martínez M, Pérez-Cano I & et al. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. J Assist Reprod Genet 2011; 28: 569-573. [DOI:10.1007/s10815-011-9549-1]
36. Yalçınkaya E, Ergin EG, Çalışkan E, Öztel Z, Özay A, Özörnek H, et al. Reproducibility of a time lapse embryo selection model based on morphokinetic data in a sequential culture media setting. J Turk Ger Gynecol Assoc 2014; 15: 156-160. [DOI:10.5152/jtgga.2014.13068]
37. Molina I, Martínez JV, Pertusa JF, Balasch S, Iniesta I, Pellicer A. Assessment of the implantation of day-2 human embryos by morphometric nonsubjective parameters. Fertil Steril 2014; 102: 1022-1028. [DOI:10.1016/j.fertnstert.2014.06.026]
38. Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remohí J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod 2011; 26: 2658-2671. [DOI:10.1093/humrep/der256]
39. Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update 2014; 20: 617-631. [DOI:10.1093/humupd/dmu023]
40. Herrero J, Meseguer M. Selection of high potential embryos using time-lapse imaging: the era of morphokinetics. Fertil Steril 2013; 99: 1030-1034. [DOI:10.1016/j.fertnstert.2013.01.089]
41. Pribenszky C, Mátyás S, Kovács P, Losonczi E, Za´dori J, Vajta G. Pregnancy achieved by transfer of a single blastocyst selected by time-lapse monitoring. Reprod Biomed Online 2010; 21: 533-536. [DOI:10.1016/j.rbmo.2010.04.015]
42. Faramarzi A, Khalili MA, Soleimani M. First successful pregnancies following embryo selection using Time-lapse technology in Iran: Case report. Iran J Reprod Med 2015; 13: 253-258.
43. Cetinkaya M, Pirkevi C, Yelke H, Colakoglu YK, Atayurt Z, Kahraman S. Relative kinetic expressions defining cleavage synchronicity are better predictors of blastocyst formation and quality than absolute time points. J Assist Reprod Genet 2015; 32: 27-35. [DOI:10.1007/s10815-014-0341-x]
44. Siristatidis C, Komitopoulou MA, Makris A, Sialakouma A, Botzaki M, Mastorakos G, et al. Morphokinetic parameters of early embryo development via time lapse monitoring and their effect on embryo selection and ICSI outcomes: a prospective cohort study. J Assist Reprod Genet 2015; 32: 563-570 [DOI:10.1007/s10815-015-0436-z]
45. Almagor, Or Y, Fieldust S, Shoham1 Z. Irregular cleavage of early preimplantation human embryos: characteristics of patients and pregnancy outcomes. J Assist Reprod Genet 2015; 32: 1811-1815. [DOI:10.1007/s10815-015-0591-2]
46. Sundvall L, Kirkegaard K, Ingerslev HJ, Knudsen UB. Unaltered timing of embryo development in women with polycystic ovarian syndrome (PCOS): a time-lapse study. J Assist Reprod Genet 2015; 32: 1031-1042. [DOI:10.1007/s10815-015-0488-0]
47. Wdowiak A, Bakalczuk S, Bakalczuk G. The effect of sperm DNA fragmentation on the dynamics of the embryonic development in intra cytoplasmic injection. Reprod Biol 2015; 15: 94-100. [DOI:10.1016/j.repbio.2015.03.003]
48. Wu L, Han W, Zhang X, Wang J, Liu W, Xiong S, et al. A retrospective analysis of morphokinetic parameters according to the implantation outcome of IVF treatment. Eur J Obstet Gynecol Reprod Biol 2016; 197: 186-190. [DOI:10.1016/j.ejogrb.2015.12.002]
49. Adamson GD, Abusief ME, Palao L, Witmer J, Palao L, Gvakharia M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil Steril 2016; 105: 369-375. [DOI:10.1016/j.fertnstert.2015.10.030]
50. Mizobe Y, Oya N, Iwakiri R, Yoshida N, Sato Y, Miyoshi K, et al. Effects of early cleavage patterns of human embryos on subsequent in vitro development and implantation. Fertil Steril 2016; 106: 348-353. [DOI:10.1016/j.fertnstert.2016.04.020]
51. Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril 2016; 105: 275-285. [DOI:10.1016/j.fertnstert.2015.10.013]
52. Nogales MDC, Bronet F, Basile N, Martínez EM, Li-án A, Rodrigo L, et al. Type of chromosome abnormality affects embryo morphology dynamics. Fertil Steril 2017; 107: 229-235. [DOI:10.1016/j.fertnstert.2016.09.019]
53. Hoseinpouran M, Khaki A, Nazem H. Assessment of Antioxidant Properties of Allium cepa on Serum Antioxidants and Spermatogenesis After Consuming Tartrazine in Rat. Crescent J Med Biol Sci 2015; 2: 125-129.
54. Alizadeh H, Khaki A, Farzadi L, Nouri M, Ahmadi-Asrbadr Y, Seyed-Ghiasi G, et al. The Therapeutic Effects of a Medicinal Plant Mixture inCapsule Form on Catalase Levels in the Semen of Men withOligospermia. Crescent J Med Biol Sci 2015; 2: 6-9.
55. Khaki A, Fathiazad F, Nouri M, Khaki AA, Ozanci CC, Ghafari-Novin M, et al. The effects of Ginger on spermatogenesis and sperm parameters of rat. Iran J Reprod Med 2009; 7: 7-12.
56. Nouri M, Khaki A, Azar FF, Rashidi MR. The protective effects of carrot seed extract on spermatogenesis and cauda epididymal sperm reserves in gentamicin treated rats. Yakhteh 2009; 11: 327-33.
57. Asghari A, Akbari G, Beigi AM, Mortazavi P. Effects of Tramadol Administration on Sperm Characteristics on Testicular Ischemia-Reperfusion Injury in Rat. Crescent J Med Biol Sci 2016; 3: 119-122.
58. Kushki D, Azarnia M, Khanipour-Khayat Z, Beigi-Boroujeni M, Moradian-Majd A, Gholami M. Effects of Vitamins E and C on Freezed-Thawed Immature Mice Testis. Zahedan J Res Med Sci 2016; (In Press). [DOI:10.17795/zjrms-7558]
59. Mitra A, Mandana B. Application of gel-based proteomic technique in female reproductive investigations. J Hum Reprod Sci 2015; 8: 18-24. [DOI:10.4103/0974-1208.153121]
60. Badr F, El Habit O, Harraz M. Radioprotective effect of melatonin assessed by measuring chromosomal damage in mitotic and meiotic cells. Mutat Res Genet Toxicol Environment Mutagen 1999; 444: 367-372. [DOI:10.1016/S1383-5718(99)00103-5]
61. Deng SL, Chen SR, Wang ZP, Zhang Y, Tang JX, Li J, et al. Melatonin promotes development of haploid germ cells from early developing spermatogenic cells of Suffolk sheep under in vitro condition. J Pineal Res 2016; 60: 435-447. [DOI:10.1111/jpi.12327]
62. Gholami M, Saki G, Hemadi M, Khodadadi A. Effect of melatonin on the expression of apoptotic genes in vitrified-thawed spermatogonia stem cells type A of 6-day-old mice. Iran J Basic Med Sci 2013; 16: 906-909.
63. Hajiaghalou S, Ebrahimi B, Shahverdi A, Sharbatoghli M, Beigi Boroujeni N. Comparison of apoptosis pathway following the use of two protocols for vitrification of immature mouse testicular tissue. Theriogenology 2016; 86: 2073-2082. [DOI:10.1016/j.theriogenology.2016.06.027]
64. Boroujeni MB, Salehnia M, Khalatbary AR, Pourbeiranvand S, Boroujeni NB, Ebrahimi S. Effect of ovarian stimulation on the endometrial apoptosis at implantation period. Iran Biomed J 2010; 14: 171-177.
65. Ahmadi SAY, Shahsavar F, Akbari S. A Review on Controversies about the Role of Immune and Inflammatory Systems in Implantation Process and Durability of Pregnancy. Int J Women's Health Reprod Sci 2016; 4: 96-102. [DOI:10.15296/ijwhr.2016.24]
66. Yasin Ahmadi SA, Tavafi M, Ahmadi PS. A critical approach to administration of low-dose aspirin (LDA) to improve implantation success. Int J Women's Health Reprod Sci 2015; 3: 223-224. [DOI:10.15296/ijwhr.2015.47]
67. Ahmadvand H, Ahmadi SAY, Sayahi A, Rezaian J. Role of Apoptosis in CNS Emphasizing Spinal Cord Injuries: A Commentary. Iran J Neurosurg 2016; 1: 30-31. [DOI:10.18869/acadpub.irjns.1.4.29]
68. Ghasemi FM, Faghani M, Khajehjahromi S, Bahadori M, Nasiri E, Hemadi M. Effect of melatonin on proliferative activity and apoptosis in spermatogenic cells in mouse under chemotherapy. J Reprod Contracept 2010; 21: 79-94. [DOI:10.1016/S1001-7844(10)60016-8]
69. Gholami M, Saki G, Hemadi M, Khodadadi A, Mohammadiasl J. Melatonin Effect on Immature Mouse Testicular Tissues, Vitrified-Thawed With Different Cryoprotectant Media. Jentashapir J Health Res 2015; 6: .
70. Yang W-C, Tang K-Q, Fu C-Z, Riaz H, Zhang Q, Zan L-S. Melatonin regulates the development and function of bovine Sertoli cells via its receptors MT1 and MT2. Anim Reprod Sci 2014; 147: 10-16. [DOI:10.1016/j.anireprosci.2014.03.017]
71. d'Istria M, Palmiero C, Serino I, Izzo G, Minucci S. Inhibition of the basal and oestradiol-stimulated mitotic activity of primary spermatogonia by melatonin in the testis of the frog, Rana esculenta, in vivo and in vitro. Reproduction 2003; 126: 83-90. [DOI:10.1530/rep.0.1260083]
72. Saki G, Mirhoseini M, Hemadi M, Khodadadi A, Amiri FBT. The effect of the melatonin on cryopreserved mouse testicular cells. Int J Reprod BioMed 2016; 14: 23.
73. Hemadi M, Abolhassani F, Akbari M, Sobhani A, Pasbakhsh P, Ährlund-Richter L, et al. Melatonin promotes the cumulus-oocyte complexes quality of vitrified-thawed murine ovaries; with increased mean number of follicles survival and ovary size following heterotopic transplantation. Eur J Pharmacol 2009; 618: 84-90. [DOI:10.1016/j.ejphar.2009.07.018]
74. Hemadi M, Zargar M, Sobhani A, Sobhani A. Assessment of morphological and functional changes in neonate vitrified testis grafts after host treatment with melatonin. Folia Morphol (Warsz) 2011; 70: 95-102.
75. Tena-Sempere M. Exploring the role of ghrelin as novel regulator of gonadal function. Growth Hormone and IGF Res 2005; 15: 83-88. [DOI:10.1016/j.ghir.2005.02.001]
76. Olejniczak K, Ruci-ski M, Rucha a M, Sowi-ski J. Immunohistochemical and hybridocytochemical study on ghrelin signalling in the rat seminiferous epithelium. Folia Histochemica et Cytobiologica 2009; 47: 415-423.
77. Whirledge SD, Garcia JM, Smith RG, Lamb DJ. Ghrelin partially protects against cisplatin-induced male murine gonadal toxicity in a GHSR-1a-dependent manner. Biol Reprod 2015; 92: 76. [DOI:10.1095/biolreprod.114.123570]
78. Garcia JM, Chen J-a, Guillory B, Donehower LA, Smith RG, Lamb DJ. Ghrelin prevents cisplatin-induced testicular damage by facilitating repair of DNA double strand breaks through activation of p53. Biol Reprod 2015;115: 129759 [DOI:10.1095/biolreprod.115.129759]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb