Volume 15, Issue 10 (12-2017)                   IJRM 2017, 15(10): 641-648 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golshan Iranpour F, Fazelian K, Dashti G R. Thymoquinone as a natural spermostatic substance in reproductive medicine: An experimental study. IJRM 2017; 15 (10) :641-648
URL: http://ijrm.ir/article-1-871-en.html
1- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
2- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran , dashti@med.mui.ac.ir
Abstract:   (3891 Views)
Background: Nonoxynol-9 a nonionic surfactant is widely used for its spermicidal effects. Finding new sperm immobilizing agents is necessary because Nonoxynol-9 damages the tissues of female reproductive system.
Objective: The aim of this study was to evaluate the effects of Thymoquinone (TQ) as a potential spermostatic compound on the motility and viability of human spermatozoa.
Materials and Methods: In this experimental study, the effects of 5, 10, 20, 50, 100 μg/ml, 1 and 10 mg/ml of TQ on normozoospermic semen samples were investigated. Sperm motility and viability were compared between untreated and TQ-treated aliquots of each semen sample. To evaluate the effects of TQ on the alteration of mitochondrial membrane potential (MMP), 32 semen samples were examined using 50 μg/ml of TQ. Flow cytometric analysis was performed after staining of spermatozoa with JC-1.
Results: Doses above 20 μg/ml of TQ could eventually immobilize all spermatozoa in culture medium. Adding 50 μg/ml of TQ did not significantly diminish the percentage of viable spermatozoa and flow cytometry results revealed that this amount of TQ could decrease sperm MMP.
Conclusion: TQ could discontinue the movement of sperm cells in medium without reducing the population of live spermatozoa. It is more likely that TQ exerts its spermostatic action by mitigating the MMP of spermatozoa. Therefore, TQ could be considered as a potential new natural spermostatic chemical
Full-Text [PDF 348 kb]   (943 Downloads) |   |   Full-Text (HTML)  (449 Views)  
Type of Study: Original Article |

References
1. Wilkinson D, Tholandi M, Ramjee G, Rutherford GW. Nonoxynol-9 spermicide for prevention of vaginally acquired HIV and other sexually transmitted infections: systematic review and meta-analysis of randomized controlled trials including more than 5000 women. Lancet Infect Dis 2002; 2: 613-617. [DOI:10.1016/S1473-3099(02)00396-1]
2. Van Damme L, Ramjee G, Alary M, Vuylsteke B, Chandeying V, Rees H, et al. Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial. Lancet 2002; 360: 971-977. [DOI:10.1016/S0140-6736(02)11079-8]
3. Ragheb A, Attia A, Eldin WS, Elbarbry F., Gazarin S, Shoker A. The protective effect of thymoquinone, an anti-oxidant and anti-inflammatory agent, against renal injury: a review. Saudi J Kidney Dis Transpl 2009; 20: 741-752.
4. Al-Zahrani S, Mohany M, Kandeal S, Badr G. Thymoquinone and vitamin E supplementation improve the reproductive characteristics of heat stressed male mice. J Med Plants Res 2012; 6: 493-499. [DOI:10.5897/JMPR11.1252]
5. Saheera K, Sha'ban M, Abdul Rahman S. Effects on mouse spermatogenesis and DNA fragmentation following exposure to cyclophosphamide and thymoquinone. Eur Int J Sci Technol 2013; 2: 119-136.
6. Kanter M. Thymoquinone reestablishes spermatogenesis after testicular injury caused by chronic toluene exposure in rats. Toxicol Ind Health 2011; 27: 155-166. [DOI:10.1177/0748233710382541]
7. Lina S, Hashida NH, Eliza H. Role of Habbatus sauda towards the histological features of nicotine treated male rats seminal vesicle and prostate gland. Biomed Res 2014; 25: 11-18.
8. Hughes LM, Griffith R, Carey A, Butler T, Donne SW, Beagley KW, et al. The spermostatic and microbicidal actions of quinones and maleimides: toward a dual-purpose contraceptive agent. Mol Pharmacol 2009; 76: 113-124. [DOI:10.1124/mol.108.053645]
9. Alhimaidi AR. Thymoquinone treatment of intracytoplasmic sperm injection (ICSI) compared to in vitro fertilization of mice oocytes and their development in vitro. Adv Mol Med 2005; 1: 119-123.
10. Kamarzaman S, Wahab AY, Rahman SA. Effects of thymoquinone supplementation on cyclophosphamide toxicity of mouse embryo in vitro. Glob Vet 2014; 12: 80-90. 11. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th Ed. World health organization publication, china; 2010.
11. Jamalzadeh L, Ghafoori H, Sariri R, Rabuti H, Nasirzade J, Hasani H, et al. Cytotoxic effects of some common organic solvents on MCF-7, RAW-264.7 and human umbilical vein endothelial cells. Avicenna J Med Biochem 2016; 4 e33453. [DOI:10.17795/ajmb-33453]
12. Hossain S, Sikes-Thurston E, Leppla SH, Wein AN. Thymoquinone as a novel antibiotic and chemotherapeutic agent: a natural therapeutic approach on Staphylococcus aureus, Bacillus anthracis, and four NCI-60 cancer cell lines. J Exp Second Sci 2012; 19: 1-4.
13. Guthrie HD, Welch GR. Effects of reactive oxygen species on sperm function. Theriogenology 2012; 78: 1700-1708. [DOI:10.1016/j.theriogenology.2012.05.002]
14. Gali-Muhtasib HU, Kheir WG, Kheir LA, Darwiche N, Crooks PA. Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs 2004; 15: 389-399. [DOI:10.1097/00001813-200404000-00012]
15. Banerjee S, Kaseb AO, Wang Z, Kong D, Mohammad M, Padhye S, et al. Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res 2009; 69: 5575-5583. [DOI:10.1158/0008-5472.CAN-08-4235]
16. Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, et al. Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr Cancer 2010; 62: 938-946. [DOI:10.1080/01635581.2010.509832]
17. Malkovsky M, Newell A, Dalglish AG. Inactivation of HIV by Nonoxynol-9. Lancet 1988; 1: 645. [DOI:10.1016/S0140-6736(88)91440-7]
18. Azeiz AZ A, Saad AH, Darweesh MF. Efficacy of Thymoquinone against Vaginal Candidiasis in Prednisolone-induced Immunosuppressed Mice. J Am Sci. 2013; 9: 155-159.
19. Rooney S, Ryan MF. Effects of Alpha-hederin and thymoquinone, constituents of Nigella sativa on human cancer cell lines. Anticancer Res 2005; 25: 2199-2204.
20. Gali-Muhtasib HU, Abou Kheir WG, Kheir LA, Darwiche N, Crooks PA. Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anti-cancer Drugs 2004; 15: 389-399. [DOI:10.1097/00001813-200404000-00012]
21. Worthen DR, Ghosheh OA, Crooks PA. The in vitro anti-tumor activity of some crude and purified components of black seed, Nigella sativa L. Anticancer Res 1997; 18: 1527-1532.
22. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003; 17: 299-305. [DOI:10.1002/ptr.1309]
23. Forouzanfar F, Bazzaz BS, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 2014; 17: 929-938.
24. Tonkal A. In vitro antitrichomonal effect of Nigella sativa aqueous extract and wheat germ agglutinin. Med Sci 2009; 16: 17-34. [DOI:10.4197/Med.16-2.2]
25. Ruiz-Pesini E, Diez C, Lape-a AC, Pérez-Martos A, Montoya J, Alvarez E, et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem 1998; 44:1616-1620.
26. Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, et al. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biology-Anim 2016; 52: 953-960. [DOI:10.1007/s11626-016-0061-x]
27. Barroso G, Taylor S, Morshedi M, Manzur F, Gavi-o F, Oehninger S. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril 2006; 85: 149-154. [DOI:10.1016/j.fertnstert.2005.06.046]
28. Kasai T, Ogawa K, Mizuno K, Nagai S, Uchida Y, Ohta S, et al. Relationship between sperm mitochondrial membrane potential, sperm motility, and fertility potential. Asian J Androl 2002; 4: 97-104.
29. Paoli D, Gallo M, Rizzo F, Baldi E, Francavilla S, Lenzi A, et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil Steril 2011; 95: 2315-2319. [DOI:10.1016/j.fertnstert.2011.03.059]
30. Piasecka M, Kawiak J. Sperm mitochondria of patients with normal sperm motility and with asthenozoospermia: morphological and functional study. Folia Histochem Cytobiol 2003; 41: 125-139.
31. Sousa AP, Amaral A, Baptista M, Tavares R, Caballero Campo P, Caballero Peregrín P, et al. Not all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PloS One 2011; 6: e18112. [DOI:10.1371/journal.pone.0018112]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb