دوره 15، شماره 12 - ( 9-1396 )                   جلد 15 شماره 12 صفحات 786-779 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zare Z, Abouhamzeh B, Masteri Farahani R, Salehi M, Mohammadi M. Supplementation of L-carnitine during in vitro maturation of mouse oocytes affects expression of genes involved in oocyte and embryo competence: An experimental study. IJRM 2017; 15 (12) :779-786
URL: http://ijrm.ir/article-1-928-fa.html
Supplementation of L-carnitine during in vitro maturation of mouse oocytes affects expression of genes involved in oocyte and embryo competence: An experimental study. International Journal of Reproductive BioMedicine. 1396; 15 (12) :779-786

URL: http://ijrm.ir/article-1-928-fa.html


چکیده:   (3197 مشاهده)
Background: Oocyte developmental competence is one of the key factors for determining the success rate of assisted reproductive technique.
Objective: The aim of the current study was to investigate the effect of L-carnitine (LC) supplementation during in vitro maturation (IVM), on preimplantation embryo development and expression of genes involved in embryo competence derived from oocytes selected with brilliant cresyl blue (BCB) test.
Materials and Methods: Cumulus-oocyte complexes (COCs) were obtained from NMRI mice ovaries. COCs were stained with BCB and then BCB+ (colored cytoplasm) oocytes cultured in IVM medium supplemented with 0.3 or 0.6 mg/ml LC. COCs untreated with LC were used as control. Fertilization rate and blastocyst development rate were determined after in vitro fertilization. In addition, quantitative reverse transcriptase polymerase chain reaction was used to measure relative genes expression related with development (Ccnb1, Mos, Ces5, and Dppa2) and apoptosis (Bax and Bcl-xL) in oocytes and embryos.
Results: Oocytes treated with both LC concentrations showed higher blastocyst development rate compared with untreated oocytes (p<0.01). Moreover, fertilization rate was increased in oocytes treated with 0.6 mg/ml LC (p<0.01). Treatment of oocytes with both LC concentrations increased (p<0.01) the level of Ccnb1 mRNA in MII oocytes. The two-cell stage embryos and blastocysts derived from LC-treated oocytes (0.6 mg/ml) showed increased the expression levels of Dppa2 and Bcl-xl mRNA, respectively (p<0.01).
Conclusion: The results of the present study show that adding of LC to the IVM medium of BCB+ oocytes can ameliorate reproductive success following in vitro fertilization.
نوع مطالعه: Original Article |

فهرست منابع
1. El Hachem H, Poulain M, Finet A, Fanchin R, Frydman N, Grynberg MH. Live birth after frozen-thawed oocytes matured in vitro in a PCOS patient: a model for improving implantation rates in IVM cycles and objectively assessing the real potential of development of frozen oocytes matured in vitro. Gynecol Endocrinol 2014; 30: 415-418. [DOI:10.3109/09513590.2014.893573]
2. Sonigo C, Grynberg M. In vitro oocyte maturation for female fertility preservation. Gynecol Obstet Fertil 2014; 42: 657-660. [DOI:10.1016/j.gyobfe.2014.07.009]
3. Nagai T. The improvement of in vitro maturation systems for bovine and porcine oocytes. Theriogenology 2001; 55: 1291-1301. [DOI:10.1016/S0093-691X(01)00483-6]
4. Bhojwani S, Alm H, Torner H, Kanitz W, Poehland R. Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer. Theriogenology 2007; 67: 341-345. [DOI:10.1016/j.theriogenology.2006.08.006]
5. Paramio MT, Izquierdo D. Recent advances in in vitro embryo production in small ruminants. Theriogenology 2016; 86: 152-159. [DOI:10.1016/j.theriogenology.2016.04.027]
6. Torner H, Ghanem N, Ambros C, Holker M, Tomek W, Phatsara C, et al. Molecular and subcellular characterisation of oocytes screened for their developmental competence based on glucose-6-phosphate dehydrogenase activity. Reproduction 2008; 135: 197-212. [DOI:10.1530/REP-07-0348]
7. Alm H, Torner H, Lohrke B, Viergutz T, Ghoneim IM, Kanitz W. Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology 2005; 63: 2194-2205. [DOI:10.1016/j.theriogenology.2004.09.050]
8. Catala MG, Izquierdo D, Uzbekova S, Morato R, Roura M, Romaguera R, et al. Brilliant Cresyl Blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reprod 2011; 142: 517-527. [DOI:10.1530/REP-10-0528]
9. Fu B, Ren L, Liu D, Ma JZ, An TZ, Yang XQ, et al. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities. Asian-Australas J Anim Sci 2015; 28: 1703-1712. [DOI:10.5713/ajas.15.0051]
10. Baran V, Fabian D, Rehak P, Koppel J. Nucleolus in apoptosis-induced mouse preimplantation embryos. Zygote 2003; 11: 271-283. [DOI:10.1017/S0967199403002326]
11. Elamaran G, Singh KP, Singh MK, Singla SK, Chauhan MS, Manik RS, et al. Oxygen concentration and cysteamine supplementation during in vitro production of buffalo (Bubalus bubalis) embryos affect mRNA expression of BCL-2, BCL-XL, MCL-1, BAX and BID. Reprod Domest Anim 2012; 47: 1027-1036. [DOI:10.1111/j.1439-0531.2012.02009.x]
12. Vanella A, Russo A, Acquaviva R, Campisi A, Di Giacomo C, Sorrenti V, et al. L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biol Toxicol 2000; 16: 99-104. [DOI:10.1023/A:1007638025856]
13. Gulcin I. Antioxidant and antiradical activities of L-carnitine. Life Sci 2006; 78: 803-811. [DOI:10.1016/j.lfs.2005.05.103]
14. Qi SN, Zhang ZF, Wang ZY, Yoshida A, Ueda T. L-carnitine inhibits apoptotic DNA fragmentation induced by a new spin-labeled derivative of podophyllotoxin via caspase-3 in Raji cells. Oncol Rep 2006; 15: 119-122. [DOI:10.3892/or.15.1.119]
15. Winter BK, Fiskum G, Gallo LL. Effects of L-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br J Cancer 1995; 72: 1173-1179. [DOI:10.1038/bjc.1995.482]
16. Fathi M, El-Shahat KH. L-carnitine enhances oocyte maturation and improves in vitro development of embryos in dromedary camels (Camelus dromedaries). Theriogenology 2017; 104: 18-22. [DOI:10.1016/j.theriogenology.2017.08.006]
17. Giorgi VS, Da Broi MG, Paz CC, Ferriani RA, Navarro PA. N-Acetyl-Cysteine and l-Carnitine Prevent Meiotic Oocyte Damage Induced by Follicular Fluid From Infertile Women With Mild Endometriosis. Reprod Sci 2016; 23: 342-351. [DOI:10.1177/1933719115602772]
18. Samimi M, Jamilian M, Ebrahimi FA, Rahimi M, Tajbakhsh B, Asemi Z. Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol (Oxf) 2016; 84: 851-857. [DOI:10.1111/cen.13003]
19. Valckx SD, De Pauw I, De Neubourg D, Inion I, Berth M, Fransen E, et al. BMI-related metabolic composition of the follicular fluid of women undergoing assisted reproductive treatment and the consequences for oocyte and embryo quality. Hum Reprod 2012; 27: 3531-3539. [DOI:10.1093/humrep/des350]
20. Wrenzycki C, Herrmann D, Niemann H. Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 2007; 68 (Suppl.): S77-83. [DOI:10.1016/j.theriogenology.2007.04.028]
21. Wu YG, Liu Y, Zhou P, Lan GC, Han D, Miao DQ, et al. Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell Res 2007; 17: 722-731. [DOI:10.1038/cr.2007.66]
22. Abdelrazik H, Sharma R, Mahfouz R, Agarwal A. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil Steril 2009; 91: 589-596. [DOI:10.1016/j.fertnstert.2007.11.067]
23. Zare Z, Masteri Farahani R, Salehi M, Piryaei A, Ghaffari Novin M, Fadaei Fathabadi F, et al. Effect of L-carnitine supplementation on maturation and early embryo development of immature mouse oocytes selected by brilliant cresyle blue staining. J Assist Reprod Genet 2015; 32: 635-643. [DOI:10.1007/s10815-015-0430-5]
24. Mishra A, Reddy IJ, Gupta PS, Mondal S. L-carnitine mediated reduction in oxidative stress and alteration in transcript level of antioxidant enzymes in sheep embryos produced in vitro. Reprod Domest Anim 2016; 51: 311-321. [DOI:10.1111/rda.12682]
25. Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 2014; 148: R15-27. [DOI:10.1530/REP-13-0251]
26. Ribas GS, Vargas CR, Wajner M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 2014; 533: 469-476. [DOI:10.1016/j.gene.2013.10.017]
27. Salviano MB, Collares FJ, Becker BS, Rodrigues BA, Rodrigues JL. Bovine non-competent oocytes (BCB-) negatively impact the capacity of competent (BCB+) oocytes to undergo in vitro maturation, fertilisation and embryonic development. Zygote 2016; 24: 245-251. [DOI:10.1017/S0967199415000118]
28. Mohapatra SK, Sandhu A, Neerukattu VS, Singh KP, Selokar NL, Singla SK, et al. Buffalo embryos produced by handmade cloning from oocytes selected using brilliant cresyl blue staining have better developmental competence and quality and are closer to embryos produced by in vitro fertilization in terms of their epigenetic status and gene expression pattern. Cell Reprogram 2015; 17: 141-150. [DOI:10.1089/cell.2014.0077]
29. Silva DS, Rodriguez P, Galuppo A, Arruda NS, Rodrigues JL. Selection of bovine oocytes by brilliant cresyl blue staining: effect on meiosis progression, organelle distribution and embryo development. Zygote 2013; 21: 250-255. [DOI:10.1017/S0967199411000487]
30. You J, Lee J, Hyun SH, Lee E. L-carnitine treatment during oocyte maturation improves in vitro development of cloned pig embryos by influencing intracellular glutathione synthesis and embryonic gene expression. Theriogenology 2012; 78: 235-243. [DOI:10.1016/j.theriogenology.2012.02.027]
31. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves PB, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 2001; 64: 904-909. [DOI:10.1095/biolreprod64.3.904]
32. Khanmohammadi N, Movahedin M, Safari M, Sameni HR, Yousefi B, Jafari B, et al. Effect of L-carnitine on in vitro developmental rate, the zona pellucida and hatching of blastocysts and their cell numbers in mouse embryos. Int J Reprod Biomed (Yazd) 2016; 14: 649-656.
33. Knitlova D, Hulinska P, Jeseta M, Hanzalova K, Kempisty B, Machatkova M. Supplementation of l-carnitine during in vitro maturation improves embryo development from less competent bovine oocytes. Theriogenology 2017; 102: 16-22. [DOI:10.1016/j.theriogenology.2017.06.025]
34. Zhang DX, Park WJ, Sun SC, Xu YN, Li YH, Cui XS, et al. Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation. J Reprod Dev 2011; 57: 49-56. [DOI:10.1262/jrd.10-087H]
35. Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology 2006; 65: 126-136. [DOI:10.1016/j.theriogenology.2005.09.020]
36. Chankitisakul V, Somfai T, Inaba Y, Techakumphu M, Nagai T. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology 2013; 79: 590-598. [DOI:10.1016/j.theriogenology.2012.11.011]
37. Sovernigo TC, Adona PR, Monzani PS, Guemra S, Barros F, Lopes FG, et al. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod Domest Anim 2017; 52: 561-569. [DOI:10.1111/rda.12946]
38. Tashiro F, Kanai-Azuma M, Miyazaki S, Kato M, Tanaka T, Toyoda S, et al. Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition. Genes Cells 2010; 15: 813-828. [DOI:10.1111/j.1365-2443.2010.01420.x]
39. Hu J, Wang F, Yuan Y, Zhu X, Wang Y, Zhang Y, et al. Novel importin-alpha family member Kpna7 is required for normal fertility and fecundity in the mouse. J Biol Chem 2010; 285: 33113-33122. [DOI:10.1074/jbc.M110.117044]
40. Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K. Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol 2009; 20: 346-353. [DOI:10.1016/j.semcdb.2008.12.013]
41. Wu GQ, Jia BY, Li JJ, Fu XW, Zhou GB, Hou YP, et al. L-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology 2011; 76: 785-793. [DOI:10.1016/j.theriogenology.2011.04.011]
42. Ye J, Li J, Yu Y, Wei Q, Deng W, Yu L. L-carnitine attenuates oxidant injury in HK-2 cells via ROS-mitochondria pathway. Regul Pept 2010; 161: 58-66. [DOI:10.1016/j.regpep.2009.12.024]
43. Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y, et al. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 426-436. [DOI:10.1111/j.1745-7270.2008.00418.x]
44. Zare Z, Tehrani M, Rafiei A, Valadan R, Mohammadi M. Differential expression of glutamate transporters in cerebral cortex of paraoxon-treated rats. Neurotoxicol Teratol 2017; 62: 20-26. [DOI:10.1016/j.ntt.2017.06.001]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به International Journal of Reproductive BioMedicine می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Reproductive BioMedicine

Designed & Developed by : Yektaweb