1. Yang J, Chen C. Hormonal changes in PCOS. J Endocrinol 2024; 261: e230342. [
DOI:10.1530/JOE-23-0342] [
PMID]
2. Ibáñez L, de Zegher F. Adolescent PCOS: A postpubertal central obesity syndrome. Trends Mol Med 2023; 29: 354-363. [
DOI:10.1016/j.molmed.2023.02.006] [
PMID]
3. Monshizadeh K, Tajamolian M, Anbari F, Vahidi Mehrjardi MY, Kalantar SM, Dehghani M. The association of RBX1 and BAMBI gene expression with oocyte maturation in PCOS women. BMC Med Genomics 2024; 17: 24. [
DOI:10.1186/s12920-024-01800-2] [
PMID] [
PMCID]
4. Tay CT, Garrad R, Mousa A, Bahri M, Joham A, Teede H. Polycystic ovary syndrome (PCOS): International collaboration to translate evidence and guide future research. J Endocrinol 2023; 257: e220232. [
DOI:10.1530/JOE-22-0232] [
PMID]
5. Di Lorenzo M, Cacciapuoti N, Lonardo MS, Nasti G, Gautiero C, Belfiore A, et al. Pathophysiology and nutritional approaches in polycystic ovary syndrome (PCOS): A comprehensive review. Curr Nutr Rep 2023; 12: 527-544. [
DOI:10.1007/s13668-023-00479-8] [
PMID] [
PMCID]
6. Adone A, Fulmali DG. Polycystic ovarian syndrome in adolescents. Cureus 2023; 15: e34183. [
DOI:10.7759/cureus.34183]
7. Nasser JS, Altahoo N, Almosawi S, Alhermi A, Butler AE. The role of MicroRNA, long non-coding RNA and circular RNA in the pathogenesis of polycystic ovary syndrome: A literature review. Int J Mol Sci 2024; 25: 903. [
DOI:10.3390/ijms25020903] [
PMID] [
PMCID]
8. Rashid G, Khan NA, Elsori D, Youness RA, Hassan H, Siwan D, et al. miRNA expression in PCOS: Unveiling a paradigm shift toward biomarker discovery. Arch Gynecol Obstet 2024; 309: 1707-1723. [
DOI:10.1007/s00404-024-07379-4] [
PMID]
9. Topkaraoğlu S, Hekimoğlu G. Abnormal expression of miRNA in women with polycystic ovary syndrome (PCOS). Med Res Rep 2023; 6: 183-191. [
DOI:10.55517/mrr.1324616]
10. Pan B, Toms D, Shen W, Li J. MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Am J Physiol Endocrinol Metab 2015; 308: E525-E534. [
DOI:10.1152/ajpendo.00480.2014] [
PMID] [
PMCID]
11. Sun X-F, Li Y-P, Pan B, Wang Y-F, Li J, Shen W. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte in vivo. Cell Cycle 2018; 17: 2230-2242. [
DOI:10.1080/15384101.2018.1520557] [
PMID] [
PMCID]
12. Aydos A, Gurel A, Oztemur Islakoglu Y, Noyan S, Gokce B, Ecemis T, et al. Identification of polycystic ovary syndrome (PCOS) specific genes in cumulus and mural granulosa cells. PLoS One 2016; 11: e0168875. [
DOI:10.1371/journal.pone.0168875] [
PMID] [
PMCID]
13. Qiao G-Y, Dong B-W, Zhu C-J, Yan C-Y, Chen B-L. Deregulation of WNT2/FZD3/β-catenin pathway compromises the estrogen synthesis in cumulus cells from patients with polycystic ovary syndrome. Biochem Biophys Res Commun 2017; 493: 847-854. [
DOI:10.1016/j.bbrc.2017.07.057] [
PMID]
14. Hu Y, Zhang R, Zhang S, Ji Y, Zhou Q, Leng L, et al. Transcriptomic profiles reveal the characteristics of oocytes and cumulus cells at GV, MI, and MII in follicles before ovulation. J Ovarian Res 2023; 16: 225. [
DOI:10.1186/s13048-023-01291-2] [
PMID] [
PMCID]
15. Kim J, Ri HK, Kim S, Min CY. Position and characteristics of adolescents diagnosed as PCOS under the original Rotterdam criteria but excluded under the 2018 updated guideline. Endocrine Abstracts 2023; 90: EP911. [
DOI:10.1530/endoabs.90.EP911]
16. Kubelac P, Braicu C, Raduly L, Chiroi P, Nutu A, Cojocneanu R, et al. Comprehensive analysis of the expression of key genes related to hippo signaling and their prognosis impact in ovarian cancer. Diagnostics 2021; 11: 344. [
DOI:10.3390/diagnostics11020344] [
PMID] [
PMCID]
17. Pourteymour Fard Tabrizi Z, Miraj S, Tahmasebian Sh, Ghasemi S. Plasma levels of miR-27a, miR-130b, and miR-301a in polycystic ovary syndrome. Int J Mol Cell Med 2020; 9: 198-206.
18. Gifford JAH. The role of WNT signaling in adult ovarian folliculogenesis. Reproduction 2015; 150: R137-R148. [
DOI:10.1530/REP-14-0685] [
PMID] [
PMCID]
19. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7: 3. [
DOI:10.1038/s41392-021-00762-6] [
PMID] [
PMCID]
20. Zheng P, Vassena R, Latham K. Expression and downregulation of WNT signaling pathway genes in rhesus monkey oocytes and embryos. Mol Reprod Dev 2006; 73: 667-677. [
DOI:10.1002/mrd.20428] [
PMID]
21. Sayutti N, Abu MA, Ahmad MF. PCOS and role of cumulus gene expression in assessing oocytes quality. Front Endocrinol 2022; 13: 843867. [
DOI:10.3389/fendo.2022.843867] [
PMID] [
PMCID]
22. Tepekoy F, Uysal F, Acar N, Ustunel I, Akkoyunlu G. The effect of GnRH antagonist cetrorelix on Wnt signaling members in pubertal and adult mouse ovaries. Histochem Cell Biol 2019; 152: 423-437. [
DOI:10.1007/s00418-019-01817-0] [
PMID]
23. Li S, Yang F, Wang M, Cao W, Yang Z. miR-378 functions as an onco-miRNA by targeting the ST7L/Wnt/β-catenin pathway in cervical cancer. Int J Mol Med 2017; 40: 1047-1056. [
DOI:10.3892/ijmm.2017.3116] [
PMID] [
PMCID]
24. Zeng M, Zhu L, Li L, Kang C. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell Mol Biol Lett 2017; 22: 12. [
DOI:10.1186/s11658-017-0041-5] [
PMID] [
PMCID]