Volume 15, Issue 1 (1-2017)                   IJRM 2017, 15(1): 41-48 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ostovan F, Gol A, Javadi A. Investigating the effects of Citrullus colocynthis pulp on oxidative stress in testes and epididymis in streptozotocin-induced diabetic male rats. IJRM. 2017; 15 (1) :41-48
URL: http://ijrm.ssu.ac.ir/article-1-788-en.html
1- Faculty of Science, Payam noor University, Iranshhar, Iran.
2- Department of Biology, Faculty of Science, University of Shahid Bahonar, Kerman, Iran. , agol@mail.uk.ac.ir
3- Pathology Department, Beheshti University of Medical Sciences, Tehran, Iran.
Abstract:   (2489 Views)
Background: Diabetes mellitus (DM) is one of the most common metabolic diseases in humans, affecting 100 million people around the world.
Objective: Investigating the effects of Citrullus colocynthis pulp on oxidant and antioxidant factors of testes and epididymis in streptozotocin-induced diabetic male rats.
Materials and Methods: Thirty-two male rats were divided into four groups eight each: 1) N (normal) group, 2) N+C group, 3) D (diabetic) group and 4) D+C group. Groups N and D received normal saline 2 ml orally for two weeks and groups N+C and D+C received 10 mg/kg.bw Citrullus colocynthis pulp orally for two weeks. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ) at 65 mg/kg.
Results: D group had a significant increase in H2O2 (Hydrogen peroxide) and MDA (malondialdehyde) concentrations, and CAT (catalase) activity, and also a significant decrease in Peroxidase (POD) activity compared to N group. D+C group had a significant decrease in H2O2 and MDA concentrations and, CAT activity and significant increase in POD activity compared to D group.
Conclusion: Citrullus colocynthis pulp in two weeks had beneficial effects on oxidants and antioxidants changes in reproductive system in streptozotocin-induced diabetic rats.
Full-Text [PDF 209 kb]   (599 Downloads) |   |   Full-Text (HTML)  (170 Views)  
Type of Study: Original Article |

1. Cortopassi GA and Wong A. Mitochondria in organismal ageing and degeneration. Biochim Biophys Acta 1999; 1410: 183-193. [DOI:10.1016/S0005-2728(98)00166-2]
2. Aktaran S, Akarsu E, Meram I, Kartal M, Araz M. Correlation of Increased Lipid Peroxidation with Serum Gonadotropins and Testosterone Levels in Type 2 Diabetic Men with Erectile Dysfunction. Turkish J Endocrinol Metab 2005; 4: 119-124.
3. Flatt PR, Abdel-Wahab YHA, Boyd AC, Barnett CR, and O'Harte FPM. Pancreatic B-cell dysfunction and glucose toxic ity in non-insulin-dependent diabetes. Proc Nutr Soc 1997; 56: 243-262. [DOI:10.1079/PNS19970029]
4. Hunt JV, Dean RT, and Wolff SP. Hydroxyl radical produc tion and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 1988; 256: 205-212. [DOI:10.1042/bj2560205]
5. Kaneto H, Fujii J, Myint T, Miyazawa N, Islam KN, Ka Wasaki Y, et al. Sugars trigger oxidative modification and apoptosis in pancreatic b-cells by provoking oxidative stress through the glycation reaction. Biochem J 1996; 320: 855-863. [DOI:10.1042/bj3200855]
6. Baynes JW. Role of oxidative stress in development of complica tions in diabetes. Diabetes 1991; 40: 405-412. [DOI:10.2337/diab.40.4.405]
7. Maxwell SR, Thomason H, Sandler D, Leguen C, Baxter MA, Thorpe GH, et al. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin dependent diabetes mellitus. Eur J Clin Invest 1997; 27: 484-490. [DOI:10.1046/j.1365-2362.1997.1390687.x]
8. Gaitonde P, Garhyan P, Link C, Chien JY, Trame MN, Schmidt S. A comprehensive review of novel drug-disease models in diabetes drug development. Clin Pharmacokinet 2016; 55: 769-788. [DOI:10.1007/s40262-015-0359-y]
9. Mallidis C, Agbaje I, McClure N, Kliesch S. The influence of diabetes mellitus on male reproductive function: A poorly investigated aspect of male infertility. Urologe A 2011; 50: 33-37. [DOI:10.1007/s00120-010-2440-3]
10. Ward DN, Bousfield GR, Moore KH. In: Cupps PT, ed. Reproduction in Domestic Animals. San Diego, Calif, Academic Press; 1991: 25-67.
11. Hutson JC, Stocco DM, Campbell GT, Wagoner J. Sertoli cell function in diabetic, insulin-treated diabetic, and semi-starved rats. Diabetes 1983; 32: 112-116. [DOI:10.2337/diab.32.2.112]
12. Ballester, M. Mun OZ, Domi ´Nguze, Rigue, Joan J. Guinovart, Joan E. Rodri ´Guez-gil. Insulin dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J Androl 2004; 25: 706-719. [DOI:10.1002/j.1939-4640.2004.tb02845.x]
13. Alkofahi A, Batshoun R, Owis W, Najib N. Biological activity of some Jordanian plants extracts. Fitoterapia 1996; 5: 435-442.
14. Oliveira JS, Silva AA, Silva VA Junior. Phytotherapy in reducing glycemic index and testicular oxidative stress resulting from induced diabetes: a review. Braz J Biol 2016; 0: 0.
15. Krinsky NI. Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med 1992; 200: 248-254. [DOI:10.3181/00379727-200-43429]
16. Salvemini DR. Botting, Modulation of platelet function by free radicals and free radical scavengers. Trends Pharmacol Sci 1993; 14: 36-42. [DOI:10.1016/0165-6147(93)90028-I]
17. Sawaya WN, Daghir NJ, Khalil JK. Citrullus colocynthis seeds as a potential source of protein for food and feed. J Agr Food Chem 1986; 34: 285-288. [DOI:10.1021/jf00068a035]
18. Huseini HF, Darvishzadeh F, Heshmat R, Jafariazar Z, Raza M, Larijani B. The clinical investigation of citrullus colocynthis (L.) schrad fruit in treatment of Type II diabetic patients: a randomized, double blind, placebo-controlled clinical trial. Phytother Res 2009; 23: 1186-1189. [DOI:10.1002/ptr.2754]
19. Kumar S, Kumar D, Manjusha K, Singh SN, Vashishta B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. Methanolic fruit extract. Acta Pharm 2008; 58: 215-20. [DOI:10.2478/v10007-008-0008-1]
20. Houcine B, Rachid A, Rabah D, Farid L, Nabila B, Boufeldja T. Effect of saponosides crude extract isolated from Citrullus colocynthis (L.) seeds on blood glucose leve in normal and streptozotocin induced diabetic rats. J Med Plants Res 2011; 5: 6864-6868.
21. Nagappa AN, Thakurdesai PA, Venkat Rao N, Singh VJ. Antidiabetic activity of Terminalia catappa Linn fruits. J Ethnopharmacol 2003; 88: 45-50. [DOI:10.1016/S0378-8741(03)00208-3]
22. Aebi, H. Catalase in vitro. Methods Enzymol 1984; 8: 121-126. [DOI:10.1016/S0076-6879(84)05016-3]
23. Plewa MJ, Smith SR, Wagner ED. Diethyldithiocarbamate Suppresses the Plant Activation of Aromatic Amines into Mutagens by Inhibiting Tobacco Cell Peroxidase. Mutant Res 1991; 247: 57-64. [DOI:10.1016/0027-5107(91)90033-K]
24. Heath RL, Packer L. Photoperoxidarion in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 1968; 125: 189-198. [DOI:10.1016/0003-9861(68)90654-1]
25. Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants Protective role of exogenous polyamines. Plant Sci 2000; 151: 59-66. [DOI:10.1016/S0168-9452(99)00197-1]
26. Carvalho EN, Ferreira LM. Experimental Model of Induction of Diabetes Mellitus in rats. Acta. Cirurgica Brasileira 2003; 18: 60-64. [DOI:10.1590/S0102-86502003001100009]
27. Rupasinghe HP, Jackson CJ, Poysa V, Di Berardo C, Bewley JD, Jenkinson J. Soyasapogenol A and B distribution in soybean (Glycine max L. Merr.) in relation to seed physiology, genetic variability, and growing location. J Agric Food Chem 2003; 51: 5888-5894. [DOI:10.1021/jf0343736]
28. Tanaka Y, Shimizu H, Sato N, Mori M, Shimomura Y. Involvement of spontaneous nitric oxide production in the diabetogenic action of streptozotocin. Pharmacology Feb 1995; 50: 69-73. [DOI:10.1159/000139268]
29. Garcia JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, Oh CS, Munoz-Hoyos A. Melato nin prevents changes in microsomal mem brane f luidity during induced lipid peroxidation. FEBS Lett 1997; 408: 297-300. [DOI:10.1016/S0014-5793(97)00447-X]
30. Stark G. Functional consequences of membrane damage. J Membr Biol 2005; 205: 1e16.
31. Esterbauner H, Schaur RJ, Zöllner H. Chemis try and biochemistry of 4-hydroxynonenal, ma lonaldehyde and related aldehydes. Free Radic Biol 1991; 11: 81-128. [DOI:10.1016/0891-5849(91)90192-6]
32. Grune T, Siems WG, Petras T. Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal in situ perfused rat kidney. J Lipid Res 1997; 38: 1660-1665.
33. Bray RC, Cockle SA, Fielden EM, Roberts PB, Rotilio G, Calabrese L. Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem 1974; 139: 43-48. [DOI:10.1042/bj1390043]
34. Seven A, Guzel S, Symen O, Civeleki S. Effects of Vitamin E Supplementation on oxidative stress in streptozotocin Induced Diadetic Rats: Investigation of liver and plasma. Yonsei Med J 2004; 45: 703-710. [DOI:10.3349/ymj.2004.45.4.703]
35. Searle AJ, Wilson R. Glutathione Peroxide effect on superoxide, hydroxyl and bromine free radicals on enzyme activity. Int J Radiat Biol 1980; 37: 213-217.
36. Dallak M, Bin-Jaliah I. Antioxidant acticity of citrullus colocynthis pulp Extract in the RBC'S of alloxan-induced diabetic Rats. Pak J Physiol 2010; 6: 1-4.
37. Maritim AC, Moore BH, Sanders RA, Watkins JB III. Effects of melatonin on oxidative stress in streptozotocin induced diabetic rats. Int J Toxicol 1999; 18:161-166. [DOI:10.1080/109158199225440]
38. Kakkar R, Mantha SV, Kalra J, Prasad K. Time course study of oxidative stress in aorta and heart of diabetic rat. Clin Sci 1996; 91: 441-448. [DOI:10.1042/cs0910441]
39. Mak DHF, Ip SP, Li PC, Poon MKT, Ko KM. Alterations in tissue glutathione antioxidant system in streptozotocin-induced tissue glutathione antioxidant system in streptozotocin-induced diabetic rats. Mol Cel Biochem 1996; 162: 153-158. [DOI:10.1007/BF00227543]
40. Doroshow JH, Locker GY, Myers CE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites. J Clin Invest 1980; 65: 128-135. [DOI:10.1172/JCI109642]
41. Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annonna squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J 2006; 47: 670-675.
42. Basta G, Schmidt AM, De Caterina RAdvanced glycation end products and vascular inflamention: implication for accelerated atherosclerosis in diabetic. J Cardiovasec Res 2004; 63: 582-592. [DOI:10.1016/j.cardiores.2004.05.001]
43. Ali L, Khan M, Mamun M, Mosihuzzaman N, Nahar M, Rokeya AB. Studies on hypoglycemic effects of fruit pulp seed, and whole plant of Momordica charantia on normal and diabetic model rats. J Planta Med 1993; 59: 408-412. [DOI:10.1055/s-2006-959720]
44. Joslin EP, Kahn RC. Joslin's Diabetes Mellitus. 14PthP Ed. Philadelphia: Lippincott Williams & Wilkins. 2005: 999-1017.
45. Numila R, Gross R, Rchid H, Manteghetti M, Petit P, Tijane M and Ribes G. Insulin tropic effect of citrullus colocynthis fruit extract. Planta Med 2000; 66: 418-423. [DOI:10.1055/s-2000-8586]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb