Volume 21, Issue 8 (August 2023)                   IJRM 2023, 21(8): 619-628 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajizadeh-Tafti F, Golzadeh J, Akyash F, Tahajjodi S, Farashahi-Yazd E, Heidarian-Meimandi H et al . Xeno-free generation of new Yazd human embryonic stem cell lines (Yazd4-7) as a prior stage toward good manufacturing practice of clinical-grade raw materials from discarded embryos: A lab resources report. IJRM 2023; 21 (8) :619-628
URL: http://ijrm.ir/article-1-3108-en.html
1- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
2- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
3- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
4- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
5- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. , b.aflatoonian@ssu.ac.ir
Abstract:   (343 Views)
Background: Xeno-free generation of human embryonic stem cells (hESCs) is important to prevent potential animal contaminations in culture for advanced cell-based therapeutic applications. Xeno-free production of hESCs is the first step for manufacturing clinical-grade hESC lines.
Objective: To produce new hESC lines in xeno-free condition.
Materials and Methods: This lab resources report was conducted at Stem Cell Biology Research Center, Yazd, Iran from 2019-2022. 4 new hESC lines from 11 (10 fresh and 1 frozen) donated surplus discarded human embryos were established. In this study, we report the xeno-free derivation of new Yazd hESC lines (Yazd4-7), without using immunosurgery, by culturing intact zona-free blastocysts obtained from discarded embryos onto the YhFF#8 cells as a feeder layer in a microdrop culture system. The pluripotency gene expression profile of the cell lines was assessed by reverse transcription polymerase chain reaction and the expression of specific surface markers was detected using immunofluorescent staining. In vitro differentiation was induced using embryoid body formation and gene expression profile of 3 germ layers and germ cells. Reverse transcriptase polymerase chain reaction was investigated to prove their pluripotent capacity.
Results: In sum, we have been able to generate 4 new hESC lines (Yazd4-7) from 11 discarded embryos in xeno-free culture conditions using a micro drop culture system and YhFF#8 as a human source feeder layer.
Conclusion: The outcome of this work can be the foundation for the future allogeneic cell-based therapeutic application using clinical grade good manufacturing practice-derived hESC derivatives. 
Full-Text [PDF 11455 kb]   (268 Downloads) |   |   Full-Text (HTML)  (79 Views)  
Type of Study: Original Article | Subject: Stem Cell & Cloning

References
1. Ozawa H, Matsumoto T, Nakagawa M. Culturing human pluripotent stem cells for regenerative medicine. Expert Opin Biol Ther 2023; 23: 479-489. [DOI:10.1080/14712598.2023.2225701] [PMID]
2. Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular mechanisms underlying pluripotency and self-renewal of embryonic stem cells. Int J Mol Sci 2023; 24: 8386. [DOI:10.3390/ijms24098386] [PMID] [PMCID]
3. Ausubel LJ, Lopez PM, Couture LA. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications. Methods Mol Biol 2011; 767: 147-159. [DOI:10.1007/978-1-61779-201-4_11] [PMID]
4. Cha Y, Park TY, Leblanc P, Kim KS. Current status and future perspectives on stem cell-based therapies for parkinson's disease. J Mov Disord 2023; 16: 22-41. [DOI:10.14802/jmd.22141] [PMID] [PMCID]
5. Fan Y, Wu J, Ashok P, Hsiung M, Tzanakakis ES. Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: Progress and challenges. Stem Cell Rev Rep 2015; 11: 96-109. [DOI:10.1007/s12015-014-9544-x] [PMID] [PMCID]
6. Vemuri MC, Schimmel T, Colls P, Munne S, Cohen J. Derivation of human embryonic stem cells in xeno-free conditions. Methods Mol Biol 2007; 407: 1-10. [DOI:10.1007/978-1-59745-536-7_1] [PMID]
7. Souralova T, Rehakova D, Jeseta M, Tesarova L, Beranek J, Ventruba P, et al. The manufacture of xeno- and feeder-free clinical-grade human embryonic stem cell lines: First step for cell therapy. Int J Mol Sci 2022; 23: 12500. [DOI:10.3390/ijms232012500] [PMID] [PMCID]
8. Go YY, Lee CM, Chae SW, Song JJ. Regenerative capacity of trophoblast stem cell-derived extracellular vesicles on mesenchymal stem cells. Biomater Res 2023; 27: 62. [DOI:10.1186/s40824-023-00396-5] [PMID] [PMCID]
9. Mallon BS, Park K-Y, Chen KG, Hamilton RS, McKay RDG. Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol 2006; 38: 1063-1075. [DOI:10.1016/j.biocel.2005.12.014] [PMID] [PMCID]
10. Fortress AM, Miyagishima KJ, Reed AA, Temple S, Clegg DO, Tucker BA, et al. Stem cell sources and characterization in the development of cell-based products for treating retinal disease: An NEI Town Hall report. Stem Cell Res Ther 2023; 14: 53. [DOI:10.1186/s13287-023-03282-y] [PMID] [PMCID]
11. Lei T, Jacob S, Ajil-Zaraa I, Dubuisson J-B, Irion O, Jaconi M, et al. Xeno-free derivation and culture of human embryonic stem cells: Current status, problems and challenges. Cell Res 2007; 17: 682-688. [DOI:10.1038/cr.2007.61] [PMID]
12. Kumari R, Rani M, Nigam A, Kumar A. Stem cell culture techniques. In: Mani S, Singh M, Kumar A. Animal cell culture: Principles and practice. Cham: Springer International Publishing; 2023. [DOI:10.1007/978-3-031-19485-6_15]
13. Lee JB, Lee JE, Park JH, Kim SJ, Kim MK, Roh SI, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod 2005; 72: 42-49. [DOI:10.1095/biolreprod.104.033480] [PMID]
14. Akyash F, Tahajjodi SS, Farashahi Yazd E, Hajizadeh-Tafti F, Sadeghian-Nodoushan F, Golzadeh J, et al. Derivation of new human embryonic stem cell lines (Yazd1-3) and their vitrification using Cryotech and Cryowin tools: A lab resources report. Int J Reprod BioMed 2019; 17: 891-906. [DOI:10.18502/ijrm.v17i12.5808] [PMID] [PMCID]
15. Akyash F, Sadeghian-Nodoushan F, Tahajjodi SS, Nikukar H, Farashahi Yazd E, Azimzadeh M, et al. Human embryonic stem cells and good manufacturing practice: Report of a 1- day workshop held at Stem Cell Biology Research Center, Yazd, 27th April 2017. Int J Reprod BioMed 2017; 15: 255-256. [DOI:10.29252/ijrm.15.5.255] [PMID] [PMCID]
16. Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: Historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol 2015; 13: 9. [DOI:10.1186/s12958-015-0005-4] [PMID] [PMCID]
17. Zhang D, Mai Q, Li T, Huang J, Ding C, Jia M, et al. Comparison of a xeno-free and serum-free culture system for human embryonic stem cells with conventional culture systems. Stem Cell Res Ther 2016; 7: 101. [DOI:10.1186/s13287-016-0347-7] [PMID] [PMCID]
18. Aflatoonian B, Ruban L, Shamsuddin S, Baker D, Andrews P, Moore H. Generation of Sheffield (Shef) human embryonic stem cell lines using a microdrop culture system. In Vitro Cell Dev Biol Anim 2010; 46: 236-241. [DOI:10.1007/s11626-010-9294-2] [PMID]
19. Taheri F, Khalili MA, Kalantar SM, Fesahat F, Montazeri F, Grazia Palmerini M, et al. Generation of viable blastocysts from discarded human cleavage embryos. Middle East Fertil Soc J 2020; 18: 1-9. [DOI:10.1186/s43043-020-00028-1]
20. Hajizadeh-Tafti F, Golzadeh J, Farashahi-Yazd E, Heidarian-Meimandi H, Aflatoonian B. Established Yazd human foreskin fibroblast lines (#8, #17, and #18) displaying similar characteristics to mesenchymal stromal cells: A lab resources report. Int J Reprod BioMed 2022; 20: 519-528. [DOI:10.18502/ijrm.v20i7.11554] [PMID] [PMCID]
21. Andrews PW. Human pluripotent stem cells: Tools for regenerative medicine. Biomater Transl 2021; 2: 294-300.
22. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-1147. [DOI:10.1126/science.282.5391.1145] [PMID]
23. McCaughey‐Chapman A, Connor B. Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cell‐based remyelination therapies. J Neurosci Res 2023; 101: 1000-1028. [DOI:10.1002/jnr.25173] [PMID]
24. Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol 2005; 23: 699-708. [DOI:10.1038/nbt1102] [PMID]
25. Hewitt ZA, Amps KJ, Moore HD. Derivation of GMP raw materials for use in regenerative medicine: hESC-based therapies, progress toward clinical application. Clin Pharmacol Ther 2007; 82: 448-452. [DOI:10.1038/sj.clpt.6100321] [PMID]
26. Shimizu E, Iguchi H, Le MNT, Nakamura Y, Kobayashi D, Arai Y, et al. A chemically-defined plastic scaffold for the xeno-free production of human pluripotent stem cells. Sci Rep 2022; 12: 2516. [DOI:10.1038/s41598-022-06356-8] [PMID] [PMCID]
27. Hovatta O, Mikkola M, Gertow K, Strömberg A-M, Inzunza J, Hreinsson J, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 2003; 18: 1404-1409. [DOI:10.1093/humrep/deg290] [PMID]
28. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 2004; 70: 837-845. [DOI:10.1095/biolreprod.103.021147] [PMID]
29. Wang Z, Li W, Chen T, Yang J, Wen Z, Yan X, et al. Activin A can induce definitive endoderm differentiation from human parthenogenetic embryonic stem cells. Biotechnol Lett 2015; 37: 1711-1717. [DOI:10.1007/s10529-015-1829-x] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb