Volume 11, Issue 12 (1-2013)                   IJRM 2013, 11(12): 965-0 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinzadeh Shirzeily M, Pasbakhsh P, Amidi F, Mehrannia K, Sobhani A. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells. IJRM 2013; 11 (12) :965-0
URL: http://ijrm.ir/article-1-380-en.html
1- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran , sobhania@tums.ac.ir
2- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Abstract:   (2440 Views)
Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories.
Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs).
Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used.
Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3).
Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs.
Full-Text [PDF 517 kb]   (625 Downloads) |   |   Full-Text (HTML)  (454 Views)  
Type of Study: Original Article |

References
1. Valsangkar S, Bodhare T, Bele S, Sai S. An evaluation of the effect of infertility on marital, sexual satisfaction indices and health-related quality of life in women. J Hum Reprod Sci 2011; 4; 80. [DOI:10.4103/0974-1208.86088]
2. Newson A, Smajdor A. Artificial gametes: new paths to parenthood? J Med Ethics 2005; 31; 184-186. [DOI:10.1136/jme.2003.004986]
3. Hübner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R. Fuente RDL, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003; 300; 1251-1256. [DOI:10.1126/science.1083452]
4. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proce Nat Acad Sci 2003; 100; 11457-11462. [DOI:10.1073/pnas.1932826100]
5. Clark AT, Bodnar M S, FoxM, Rodriquez RT, Abeyta MJ, Firpo MT, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004; 13: 727-739. [DOI:10.1093/hmg/ddh088]
6. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006; 11: 125-132. [DOI:10.1016/j.devcel.2006.05.010]
7. Marques-Mari A, Lacham-Kaplan O, Medrano JV, Pellicer A, Simón C. Differentiation of germ cells and gametes from stem cells. Hum Reprod Update 2009; 15; 379-390. [DOI:10.1093/humupd/dmp001]
8. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dresse R, et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006; 86: 654-663. [DOI:10.1038/labinvest.3700429]
9. Drusenheimer N, Wulf G, Nolte J, Lee JH, Dev A, Nayernia K, et al. Putative human male germ cells from bone marrow stem cells. Soc Reprod Fertil Suppl 2007; 63; 69.
10. Hua J, Pana S, Yanga C, Donga W, Doua Z, Sidhub KS. Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod Biomed Online 2009; 19; 99-105. [DOI:10.1016/S1472-6483(10)60052-1]
11. Dyce PW, Zhu H, Craig J, Li J. Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 2004; 316; 651-658. [DOI:10.1016/j.bbrc.2004.02.093]
12. Young HE, Black AC. Adult stem cells. Anat Rec A Discov Mol Cell Evol Biol 2003; 276; 75-102.
13. Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, et al. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology 2003; 42; 162-165. [DOI:10.1093/rheumatology/keg024]
14. Brickman JM, Burdon TG. Pluripotency and tumorigenicity. Nature Genet 2002; 32; 557-558. [DOI:10.1038/ng1202-557]
15. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 2008; 17; 761-774. [DOI:10.1089/scd.2007.0217]
16. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7; 211-228. [DOI:10.1089/107632701300062859]
17. Jiang L, Zhu JK, Liu XL,Xiang P, Hu J, Yu WH. Differentiation of rat adipose tissue-derived stem cells into Schwann-like cells in vitro. Neuroreport 2008; 19; 1015-1019. [DOI:10.1097/WNR.0b013e3283040efc]
18. Song SH, Kumar BM, Kang EJ, Lee YM, Kim TH, Ock SA, et al. Characterization of porcine multipotent stem/stromal cells derived from skin, adipose, and ovarian tissues and their differentiation in vitro into putative oocyte-like cells. Stem Cells Dev 2011; 20: 1359-1370. [DOI:10.1089/scd.2010.0203]
19. Niwa H, Toyooka Y, Shimosato D, Strump D, Takahashi K, Yagi R, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005; 123; 917-930. [DOI:10.1016/j.cell.2005.08.040]
20. Tolkunova E, Cavaleri F, Eckardt S, Reinbold R, Christenson LK, Schöler HR, et al. The Caudal‐Related Protein Cdx2 Promotes Trophoblast Differentiation of Mouse Embryonic Stem Cells. Stem Cells 2006; 24; 139-144. [DOI:10.1634/stemcells.2005-0240]
21. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nature Rev Neurosci 2007; 8; 755-765. [DOI:10.1038/nrn2212]
22. Bowles J, Knight D, Smith1 C, Wilhelm D, Richman J, Mamiya S, et al. Retinoid signaling determines germ cell fate in mice. Science 2006; 312; 596. [DOI:10.1126/science.1125691]
23. Koshimizu U, Watanabe M, Nakatsuji N. Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro. Dev Biol 1995; 168; 683-685. [DOI:10.1006/dbio.1995.1113]
24. Jamous M, Al-Zoubi A, Khabaz MN, Khaledi R, Al KM, Al-Zoubi Z. Purification of mouse bone marrow-derived stem cells promotes exvivo neuronal differentiation. Cell Transplant 2010; 19: 193-202. [DOI:10.3727/096368910X492599]
25. Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman's syndrome. J Hum Reprod Sci 2011; 4; 43. [DOI:10.4103/0974-1208.82360]
26. Mazaheri Z, Movahedin M, Rahbarizadeh F, Amanpour S. Different doses of bone morphogenetic protein 4 promote the expression of early germ cell-specific gene in bone marrow mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2011; 47; 521-525. [DOI:10.1007/s11626-011-9429-0]
27. De Ugarte DA, Alfonsob Z, Zuka PA, Elbarbarya A, Zhua M, Ashjiana P, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Let 2003; 89; 267-270. [DOI:10.1016/S0165-2478(03)00108-1]
28. Sun S, Guo Z, Xiao X, Liu B, Liu X, Tang PH, et al. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 2003; 21; 527-535. [DOI:10.1634/stemcells.21-5-527]
29. Dominici M, Blanc KL, Mueller I, Slaper-Cortenbach4 I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8; 315-317. [DOI:10.1080/14653240600855905]
30. Meirelles LS, Nardi NB. Murine marrow‐derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 2003; 123; 702-711. [DOI:10.1046/j.1365-2141.2003.04669.x]
31. West FD, Mumaw JL, Gallegos-Cardenas A, Young A, Stice sl. Human haploid cells differentiated from meiotic competent clonal germ cell lines that originated from embryonic stem cells. Stem Cells Dev 2010; 20; 1079-1088. [DOI:10.1089/scd.2010.0255]
32. Yuan L, Liu JG, Zhao J, Brundell, E, Daneholt B, Höög C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 2000; 5; 73-83. [DOI:10.1016/S1097-2765(00)80404-9]
33. Griswold MD, Hogarth CA, Bowles J, Koopman P. Initiating meiosis: the case for retinoic acid, Soc Study Repord. Biol Reprod 2012; 86: 35, 1-7.
34. Yamauchi K, Yamauchi O, Chuma S, Nakatsuji N, Suemori H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PloS One 2009; 4; e5338. [DOI:10.1371/journal.pone.0005338]
35. Eguizabal C, Shovlin TC, Durcova-Hills G, Surani A, McLaren A. Generation of primordial germ cells from 1. Valsangkar S, Bodhare T, Bele S, Sai S. An evaluation of the effect of infertility on marital, sexual satisfaction indices and health-related quality of life in women. J Hum Reprod Sci 2011; 4; 80. [DOI:10.4103/0974-1208.86088]
36. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2003; 427; 148-154. [DOI:10.1038/nature02247]
37. Nayernia K, Li M, Jaroszynski L, Khusainov R, Wulf G, Schwandt I, et al. Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells. Hum Mol Genet 2004; 13: 1451-1460. [DOI:10.1093/hmg/ddh166]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb