Volume 11, Issue 9 (12-2013)                   IJRM 2013, 11(9): 711-0 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Walvekar M, Shaikh N, Sarvalkar P. Effects of glycowithanolides on lipid peroxidation and lipofuscinogenesis in male reproductive organs of mice. IJRM 2013; 11 (9) :711-0
URL: http://ijrm.ir/article-1-468-en.html
1- Department of Zoology, Shivaji University, Kolhapur, India
2- Department of Zoology, Shivaji University, Kolhapur, India , nilofarshaikh20@rediffmail.com
Abstract:   (2455 Views)
Background: Glycowithanolides (Withaferin A), is one of the main withanolides active principle isolated from plant Withania somnifera and is claimed that it possess the aphrodisiac, sedative, rejuvenate and life prolonging properties.
Objective: In the present investigation, antioxidant activity of active principles of Withania somnifera was tested against D-galactose induced oxidative stress in mouse testes, epididymis and seminal vesicle.
Materials and Methods: For the present investigation Swiss male albino mice Mus musculus (Linn) were used. They were grouped in to control (I), D-galactose treated (II), protective (III) and curative groups (IV). Oxidative stress was induced in six month old mice by injecting a low dose of D-galactose. Antioxidant effect of plant extract was studied in testes, epididymis, and seminal vesicle of oxidative stressed mice on Lipid peroxidation (LPO) and fluorescence product.
Results: In the present study, both total as well as mitochondrial lipid peroxidation and fluorescence product in testes, epididymis and seminal vesicle were increased in D-galactose induced mice. After the treatment of glycowithanolides there was significantly decrease in total as well as mitochondrial lipid peroxidation and fluorescence product in protective and curative groups.
Conclusion: Our results indicate that Withania somnifera has a capability of preventing oxidative stress and also combating stress induced infertility.
Full-Text [PDF 342 kb]   (573 Downloads) |   |   Full-Text (HTML)  (328 Views)  
Type of Study: Original Article |

References
1. Beauchamp C, Fridovich I. Superoxide dismutase: improved assay and assay applicable to acrylamide gels. Anal Biochem 1971; 44: 276-278. [DOI:10.1016/0003-2697(71)90370-8]
2. Luck H. In: Methods in Enzymatic Analysis, 2nd English Ed Translated from 3rd German Ed. New York, Acad Press; 1974.
3. Beers R, Sizer I. A spectrophotometeric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 1952; 195: 133-134.
4. Nagy K, Zs-Nagy I. Alterations in the molecular weight distribution of proteins in rat brain synaptosomes during aging and Centrophenoxine treatment of old rats. Mech Ageing Dev 1984; 28: 171-176. [DOI:10.1016/0047-6374(84)90017-4]
5. Patro IK, Patro N. Lipofuscin in aging brain-A selective reappraisal. Ind Rev Life Sci 1992; 12: 133-144.
6. Tomake BA, Pillai MM. Age related changes in amylase and tryspin activity in the salivary glands of male mice. Indian J Gerontol 1996; 10: 1-6.
7. Pillai MM, Ashokan KV, Jadhav SJ, Pawar BK. Protective effect of Lactucasativa on the brain of mouse during aging. Indian J Gerontol 2002; 16: 199-121.
8. Patro IK, Sharma SP, Patro N. Formation and maturation of neuronal lipofuscin. Proc Nat Acad Sci India 1987; 59: 287-293.
9. Patro IK, Sharma SP, Patro N. Influence of crowding stress on neuronal aging. Age 1987; 10: 114.
10. Donato H, Sohal RS. Age related change in lipofuscin associated flurescent substance in the adult male housefly, Musca domestica. Exp Gerontol 1978; 13: 171-179. [DOI:10.1016/0531-5565(78)90010-4]
11. Sohal RS, Donato Hr. Effect of experimental prolongation of lifespan on lipofuscin content and lysosomal enzyme activity in brain of the housefly. J Gerontol 1979; 34: 489-496. [DOI:10.1093/geronj/34.4.489]
12. Ivy, GO, Schottler, F, Wenzel, J, Boudry, M, Lynch, G. Inhibitors of lysosomalenzymes: Accumulation of lipofuscin like dense bodies in the brain. Science 1984; 226: 985-987. [DOI:10.1126/science.6505679]
13. Sharma SP, Gupta SK, Patrol K. Influence of centrophenoxine on the anterior horn of protein maturation in wistar rats. Proc Nat Acad Sci India 1987; 57: 247-249.
14. Thakkar BK, Dastur DA, Munghani DK. Neuropathology & pathogenesis of experimental phenyluramine toxicity in young rodents. Indian J Med Res 1990; 92: 54-65.
15. Brunk UT, Terman A. Lipofuscin: mechanisms of age related accumulation and influence on cell function. Free Radic Biol Med 2002; 33: 611-619. [DOI:10.1016/S0891-5849(02)00959-0]
16. Sloter E, Schmid TE, Marchetti F, Eskenazi B, Nath J, Wyrobek AJ. Quantitative effects of male age on sperm motion. Hum Reprod 2006; 21: 2868-2875. [DOI:10.1093/humrep/del250]
17. Kidd SA, Eskenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of the literature. Fertil Steril 2001; 75: 237-248. [DOI:10.1016/S0015-0282(00)01679-4]
18. Levitas E, Lunenfeld E, Weisz N, Friger M, Potashnik G. Relationship between age and semen parameters in men with normal sperm concentration analysis of 6022 semen sample. Andrologia 2007; 39: 45-50. [DOI:10.1111/j.1439-0272.2007.00761.x]
19. Aitken RJ, Irvine MD, Wu FC. Prospective analysis of sperm- oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J obstet Gynecol 1989; 164: 542-551. [DOI:10.1016/S0002-9378(11)80017-7]
20. Aitken RJ, Clarkson JS, Hargreave TB, Irvine DS, Wu FC. Analysis of the relationship between defective sperm function and the generation of reactive oxygen species in cases of oligozoospermia. J Androl 1989; 10: 214-220. [DOI:10.1002/j.1939-4640.1989.tb00091.x]
21. Aitken RJ, Clarkson, JS, Fishel C. Generation of reactive oxygen species, lipid peroxidation and human sperm function. Biol Reprod 1989; 41: 183-197. [DOI:10.1095/biolreprod41.1.183]
22. Iwasaki, A, Gagnon, C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril 1992; 57: 404-416.
23. Zini A, de Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patient's level of superoxide dismutase and Catalase like activities in seminal plasma and spermatozoa. Int J Androl 1993; 16: 183-188. [DOI:10.1111/j.1365-2605.1993.tb01177.x]
24. Aitken RJ. A Free radical theory of male infertility. Reprod Fertil Rev 1994; 6: 19-24. [DOI:10.1071/RD9940019]
25. Zalata A, Hafez T, Comair F. Evalution of the role of reactive oxygen species in male infertility. Hum Reprod 1995; 10: 1444-1451. [DOI:10.1093/HUMREP/10.6.1444]
26. Zalata A, Hafex T, Mahmoud A, Comair F. Relationship between resazurine reduction test, reactive oxygen species generation, and gamma-glutamyltransferase. Hum Reprod 1995; 10: 1136-1140. [DOI:10.1093/oxfordjournals.humrep.a136106]
27. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function its association with genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 1987; 81: 459-469. [DOI:10.1530/jrf.0.0810459]
28. Lewis SE, Boyle PM, McKinney KA, Young IS, Thompson W. Total antioxidant capacity of seminal plasma in fertile and infertile men. Fertil Steril 1995; 64: 868-870. [DOI:10.1016/S0015-0282(16)57870-4]
29. McGrady AV. Effects of psychological stress on male reproduction. Arch Androl 1984; 13: 1-7. [DOI:10.3109/01485018408987495]
30. Chatterjee A, Pakrashi SC. The Treatise on Indian Medical Plants. Publications & Information Directorate; 1995: 208-212.
31. Bone K. Clinical Application of Ayurvedic and Chinese Herbs. Monographs for the Western Herbal practitioner. Aust phytother Press; 1996: 137-141.
32. Jayaprakasam B, Zhang Y, Seeram NP, Nair MG. Growth inhibition of tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 2003; 74: 125-132. [DOI:10.1016/j.lfs.2003.07.007]
33. Abraham A, Kirson I, Glotter E, Lavie D. A chemotaxonomical study of Withania somnifera (L) Dunal. Phytochemistry 1968; 7: 957-962. [DOI:10.1016/S0031-9422(00)82182-2]
34. Song X, Bao M, LI D, Li YM. Advanced glycation in D-galactose induced mouse model. Mech Ageing Dev 1999; 108: 241-251. [DOI:10.1016/S0047-6374(99)00022-6]
35. Bhattacharya SK, Kalkunte SS, Ghosal S. Antioxident activity of glycowithanolides from Withania Somnifera. Indian J Exp Biol 1997; 35: 236-239.
36. Wills E D. Mechanism of lipid peroxidation in animal tissues. Biochem J 1966; 99: 667. [DOI:10.1042/bj0990667]
37. Dillard CJ, Tappel AL. Fluorescence product of lipid peroxidation of mitochondria and microsomes. Lipid 1971; 6: 715. [DOI:10.1007/BF02531296]
38. Bast A, Haenen GR, Doleman GJ. Oxidants and antioxidants: state of the art. AM J Med 1991; 91 : 2S-13S. [DOI:10.1016/0002-9343(91)90278-6]
39. Nakamura Y,Taleda M, Suzuki H, Morita H,Toda K, Haniguchi S, Nishimura T. Age dependent change in activities of lysosomal enzymes in rat brain. Neurosci Lett 1997; 97: 215-220. [DOI:10.1016/0304-3940(89)90166-3]
40. Hammer C, Braum F. Quantification of age pigment (lipofuscin). Comp Biochem Physiol B 1988; 90B:7-17. [DOI:10.1016/0305-0491(88)90030-2]
41. Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulos K, Richardson DW. Differetial contribution of leukocytes and spermatozoa to the generation of reactive oxygen species in ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil 1992; 94: 451-462. [DOI:10.1530/jrf.0.0940451]
42. Mazzilli F, Rossi T, Marchesini M, Ronconi C, Dondero F. Superoxide anion in human semen related to semen parameters and clinical aspects. Fertil Steril 1994; 62: 862-869. [DOI:10.1016/S0015-0282(16)57017-4]
43. Sukcharoen N, Keith J, Irvine DS, Aitken RJ. Prediction of the in vitro fertilization (IVF) potential of human spermatozoa using sperm function tests: the effect of delay between testing and IVF. Hum Reprod 1996; 11: 1030-1040. [DOI:10.1093/oxfordjournals.humrep.a019291]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb