Volume 14, Issue 4 (4-2016)                   IJRM 2016, 14(4): 231-240 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi A R. Etiologies of sperm oxidative stress. IJRM 2016; 14 (4) :231-240
URL: http://ijrm.ir/article-1-745-en.html
1- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran , prof_talebi@ssu.ac.ir
Abstract:   (3853 Views)
Sperm is particularly susceptible to reactive oxygen species (ROS) during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN) leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions.
Full-Text [PDF 189 kb]   (817 Downloads) |   |   Full-Text (HTML)  (400 Views)  
Type of Study: Original Article |

1. Sikka SC. Relative impact of oxidative stress on male reproductive function. Cur Med Chem 2001; 8: 851-862. [DOI:10.2174/0929867013373039]
2. Kobayashi CI, Suda T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 2012; 227: 421-430. [DOI:10.1002/jcp.22764]
3. Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF. Metabolic regulation is important for spermatogenesis. Nature Rev Urol 2012; 9: 330-338. [DOI:10.1038/nrurol.2012.77]
4. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int 2005; 95: 503-507. [DOI:10.1111/j.1464-410X.2005.05328.x]
5. Mostafa T, Anis T, El-Nashar A, Imam H, Othman I. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl 2001; 24: 261-265. [DOI:10.1046/j.1365-2605.2001.00296.x]
6. Agarwal A, Prabakaran SA, Said TM. Prevention of oxidative stress injury to sperm. J Androl 2005; 26: 654-660. [DOI:10.2164/jandrol.05016]
7. Sikka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. J Androl 1995; 16: 464-468.
8. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008; 59: 2-11. [DOI:10.1111/j.1600-0897.2007.00559.x]
9. Lewis S, Aitken R. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 2005; 322: 33-41. [DOI:10.1007/s00441-005-1097-5]
10. Chenoweth P. Influence of the male on embryo quality. Theriogenology 2007; 68: 308-315. [DOI:10.1016/j.theriogenology.2007.04.002]
11. Sipinen V. Exploring co-genotoxicity of chemicals using traditional experimental methods and microarray systems. Available at: https://www.duo. uio.no/handle/10852/11834.
12. Prakash S, Prithiviraj E, Suresh S, Lakshmi NV, Ganesh MK, Anuradha M, et al. Morphological diversity of sperm: A mini review. Iran J Reprod Med 2014; 12: 239-242.
13. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 2004; 62: 1186-1197. [DOI:10.1016/j.theriogenology.2004.01.011]
14. Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol 2005; 5: 5-17.
15. Alkan I, Simsek F, Haklar G, Kervancioglu E, Ozveri H, Yalcin S, et al. Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: relationship to seminal plasma antioxidants. J Urol 1997; 157: 140-143. [DOI:10.1016/S0022-5347(01)65307-2]
16. Rolf C, Cooper T, Yeung C, Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: a randomized, placebo-controlled, double-blind study. Hum Reprod 1999; 14: 1028-1033. [DOI:10.1093/humrep/14.4.1028]
17. Momeni HR, Soleimani Mehranjani M, Abnosi MH, Mahmoodi M. Effects of vitamin E on sperm parameters and reproductive hormones in developing rats treated with para-nonylphenol. Iran J Reprod Med 2009; 7: 111-116.
18. Sies H, Stahl W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 1995; 62: 1315S-1321S. [DOI:10.1093/ajcn/62.6.1315S]
19. Fanaei H, Khayat S, Halvaei I, Ramezani V, Azizi Y, Kasaeian A, et al. Effects of ascorbic acid on sperm motility, viability, acrosome reaction and DNA integrity in teratozoospermic samples. Iran J Reprod Med 2014; 12: 103-110.
20. Bucak MN, Ateşşahin A, Varışlı Ö, Yüce A, Tekin N, Akçay A. The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: microscopic and oxidative stress parameters after freeze–thawing process. Theriogenology 2007; 67: 1060-1067. [DOI:10.1016/j.theriogenology.2006.12.004]
21. Bucak MN, Tuncer PB, Sarıözkan S, Ulutaş PA, Çoyan K, Başpınar N, et al. Effects of hypotaurine, cysteamine and aminoacids solution on post-thaw microscopic and oxidative stress parameters of Angora goat semen. Res Vet Sci 2009; 87: 468-472. [DOI:10.1016/j.rvsc.2009.04.014]
22. Safarinejad MR, Safarinejad S. Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. J Urol 2009; 181: 741-751. [DOI:10.1016/j.juro.2008.10.015]
23. Holmes RP, Goodman HO, Shihabi ZK, Jarow JP. The taurine and hypotaurine content of human semen. J Androl 1992; 13: 289-292.
24. Chen Y, Foote R, Brockett C. Effect of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm. Cryobiology 1993; 30: 423-431. [DOI:10.1006/cryo.1993.1042]
25. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Current Opin Obstet Gynecol 2006; 18: 325-332. [DOI:10.1097/01.gco.0000193003.58158.4e]
26. Aitken RJ, Baker HG. Andrology: Seminal leukocytes: passengers, terrorists or good Samaritans? Hum Reprod 1995; 10: 1736-1739. [DOI:10.1093/oxfordjournals.humrep.a136165]
27. Tomlinson M, White A, Barratt C, Bolton A, Cooke I. The removal of morphologically abnormal sperm forms by phagocytes: a positive role for seminal leukocytes? Hum Reprod 1992; 7: 517-522. [DOI:10.1093/oxfordjournals.humrep.a137682]
28. Zini A, Defreitas G, Freeman M, Hechter S, Jarvi K. Varicocele is associated with abnormal retention of cytoplasmic droplets by human spermatozoa. Fertil Steril 2000; 74: 461-464. [DOI:10.1016/S0015-0282(00)00703-2]
29. Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl 1996; 17: 276-287.
30. Moein MR, Soleimani M, Tabibnejad N. Reactive oxygen species (ROS) production in seminal fluid correlate with the severity of varicocele in infertile men. 2008; 6: 65-69.
31. Dooher GB. Differences in the rate of redistribution of receptors for concanavalin A in vivo and in vitro on spermatozoa from normal mice and from sterile mice carrying different T/t locus haplotypes. Gamete Res 1981; 4: 105-111. [DOI:10.1002/mrd.1120040204]
32. Mann T, Lutwak-Mann C. Biochemistry of Spermatozoa: Chemical and Functional Correlations in Ejaculated Semen, Andrological Aspect. Male Reproductive Function and Semen, Springer; 1981: 195-268.
33. Park J, Rho HK, Kim KH, Choe SS, Lee YS, Kim JB. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol Cell Biol 2005; 25: 5146-5157. [DOI:10.1128/MCB.25.12.5146-5157.2005]
34. Frederiks WM, Vreeling-Sindelárová H. Localization of glucose-6-phosphate dehydrogenase activity on ribosomes of granular endoplasmic reticulum, in peroxisomes and peripheral cytoplasm of rat liver parenchymal cells. Histochem J 2001; 33: 345-353. [DOI:10.1023/A:1012427224822]
35. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol 2004; 2: 1-7. [DOI:10.1186/1477-7827-2-12]
36. Gavella M, Lipovac V. NADH-dependent oxidoreductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Syst Biol Reprod Med 1992; 28: 135-141. [DOI:10.3109/01485019208987691]
37. Siegel D, Gibson NW, Preusch PC, Ross D. Metabolism of diaziquone by NAD (P) H:(quinone acceptor) oxidoreductase (DT-diaphorase): role in diaziquone-induced DNA damage and cytotoxicity in human colon carcinoma cells. Cancer Res 1990; 50: 7293-7300.
38. Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod 2002; 17: 1257-1265. [DOI:10.1093/humrep/17.5.1257]
39. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313. [DOI:10.1152/physrev.00044.2005]
40. Sabeur K, Ball B. Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction 2007; 134: 263-270. [DOI:10.1530/REP-06-0120]
41. Ohlsson K, Bergenfeldt M, Björk P. Functional studies of human secretory leukocyte protease inhibitor. Proteases II: Springer; 1988: 123-31.
42. Fedder J. Nonsperm cells in human semen: with special reference to seminal leukocytes and their possible influence on fertility. Syst Biol Reprod Med 1996; 36: 41-65. [DOI:10.3109/01485019608987883]
43. Muzio M, Bosisio D, Polentarutti N, D'amico G, Stoppacciaro A, Mancinelli R, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 2000; 164: 5998-6004. [DOI:10.4049/jimmunol.164.11.5998]
44. Edmund Sabanegh M, aReecha Sharma M, bDan French M, cFnu Deepinder M, aAlaa Hamada M, Ave E. The Natural History of Seminal Leukocytes in Men Seeking Infertility Evaluation.
45. Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 1995; 369: 131-135. [DOI:10.1016/0014-5793(95)00764-Z]
46. Talebi AR. Sperm Nuclear Maturation: a basic and clinical approach: Nova Science Publishers; 2011.
47. Aitken RJ. Molecular mechanisms regulating human sperm function. Mol Hum Reprod 1997; 3: 169-173. [DOI:10.1093/molehr/3.3.169]
48. Tremellen K, Miari G, Froiland D, Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF/ICSI treatment. Aust N Z J Obstet Gynaecol 2007; 47: 216-221. [DOI:10.1111/j.1479-828X.2007.00723.x]
49. Kessopoulou E, Tomlinson M, Barratt C, Bolton A, Cooke I. Origin of reactive oxygen species in human semen: spermatozoa or leucocytes? J Reprod Fertil 1992; 94: 463-470. [DOI:10.1530/jrf.0.0940463]
50. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003; 79: 829-843. [DOI:10.1016/S0015-0282(02)04948-8]
51. Gil-Guzman E, Ollero M, Lopez M, Sharma R, Alvarez J, Thomas A, et al. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod 2001; 16: 1922-1930. [DOI:10.1093/humrep/16.9.1922]
52. Lamirande ED, Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl 1993; 16: 21-25. [DOI:10.1111/j.1365-2605.1993.tb01148.x]
53. Olugbenga OM, Olukole SG, Adeoye AT, Adejoke AD. Semen characteristics and sperm morphological studies of the West African Dwarf Buck treated with Aloe vera gel extract. Iran J Reprod Med 2011; 9: 83-88.
54. Yamagishi SI, Edelstein D, Du Xl, Kaneda Y, Guzmán M, Brownlee M. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem 2001; 276: 25096-25100. [DOI:10.1074/jbc.M007383200]
55. Ford W. Regulation of sperm function by reactive oxygen species. Hum Reprod Update 2004; 10: 387-399. [DOI:10.1093/humupd/dmh034]
56. Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, et al. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 1995; 121: 1139-1150.
57. Aitken R, Vernet P. Maturation of redox regulatory mechanisms in the epididymis. J Reprod Fertil 1997; 53: 109-118.
58. Aitken R. Possible redox regulation of sperm motility activation. J Androl 2000; 21: 491-496.
59. Sharma R, Said T, Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl 2004; 6: 139-148.
60. Alexander NJ. Male evaluation and semen analysis. Clin Obstet Gynecol 1982; 25: 463-482. [DOI:10.1097/00003081-198209000-00004]
61. Talebi AR, Sarcheshmeh AA, Khalili MA, Tabibnejad N. Effects of ethanol consumption on chromatin condensation and DNA integrity of epididymal spermatozoa in rat. Alcohol 2011; 45: 403-409. [DOI:10.1016/j.alcohol.2010.10.005]
62. Goverde H, Dekker HS, Janssen H, Bastiaans BA, Rolland R, Zielhuis GA. Semen quality and frequency of smoking and alcohol consumption--an explorative study. Int J Fertil Menopaus Stud 1994; 40: 135-138.
63. Agarwal A, Prabakaran SA. Mechanism, measurement and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol 2005; 43: 963.
64. Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas AJ. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril 2002; 78: 491-499. [DOI:10.1016/S0015-0282(02)03294-6]
65. Künzle R, Mueller MD, Hänggi W, Birkhäuser MH, Drescher H, Bersinger NA. Semen quality of male smokers and nonsmokers in infertile couples. Fertil Steril 2003; 79: 287-291. [DOI:10.1016/S0015-0282(02)04664-2]
66. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinogen 2006; 5: 14. [DOI:10.1186/1477-3163-5-14]
67. Jalili C, Salahshoor MR, Naseri A. Protective effect of Urtica dioica L against nicotine-induced damage on sperm parameters, testosterone and testis tissue in mice. Iran J Reprod Med 2014; 12: 401-408.
68. Mohammadi S, Jalali M, Nikravesh MR, Fazel A, Ebrahimzadeh A, Gholamin M, et al. Effects of Vitamin-E treatment on CatSper genes expression and sperm quality in the testis of the aging mouse. Iran J Reprod Med 2013; 11: 989-998.
69. Mostafa T, Tawadrous G, Roaia M, Amer M, Kader R, Aziz A. Effect of smoking on seminal plasma ascorbic acid in infertile and fertile males. Andrologia 2006; 38: 221-224. [DOI:10.1111/j.1439-0272.2006.00744.x]
70. Lee BM, Lee SK, Kim HS. Inhibition of oxidative DNA damage, 8-OHdG, and carbonyl contents in smokers treated with antioxidants (vitamin E, vitamin C, β-carotene and red ginseng). Cancer Lett 1998; 132: 219-227. [DOI:10.1016/S0304-3835(98)00227-4]
71. Dietrich M, Block G, Norkus EP, Hudes M, Traber MG, Cross CE, et al. Smoking and exposure to environmental tobacco smoke decrease some plasma antioxidants and increase γ-tocopherol in vivo after adjustment for dietary antioxidant intakes. Am J Clin Nutr 2003; 77: 160-166. [DOI:10.1093/ajcn/77.1.160]
72. Majo J, Ghezzo H, Cosio M. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Resp J 2001; 17: 946-953. [DOI:10.1183/09031936.01.17509460]
73. Jorsaraei SGA, Shibahara H. The in-vitro effects of nicotine, cotinine and leptin on sperm parameters analyzed by CASA system. Iran J Reprod Med 2008; 6: 157-165.
74. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 2005; 20: 2776-2783. [DOI:10.1093/humrep/dei122]
75. Sun JG, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 1997; 56: 602-607. [DOI:10.1095/biolreprod56.3.602]
76. Zavos PM, Correa JR, Karagounis CS, Ahparaki A, Phoroglou C, Hicks CL, et al. An electron microscope study of the axonemal ultrastructure in human spermatozoa from male smokers and nonsmokers. Fertil Steril 1998; 69: 430-434. [DOI:10.1016/S0015-0282(97)00563-3]
77. Vine M, Tse C-K, Hu P, Truong KY. Cigarette smoking and semen quality. Fertil Steril 1996; 65: 835-842. [DOI:10.1016/S0015-0282(16)58223-5]
78. Barbieri ER, Hidalgo ME, Venégas A, Smith R, Lissi EA. Varicocele Associated Decrease in Antioxidant Defenses. J Androl 1999; 20: 713-717.
79. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003; 9: 331-345. [DOI:10.1093/humupd/dmg027]
80. Meucci E, Milardi D, Mordente A, Martorana GE, Giacchi E, De Marinis L, et al. Total antioxidant capacity in patients with varicoceles. Fertil Steril 2003; 79: 1577-1583. [DOI:10.1016/S0015-0282(03)00404-7]
81. Agarwal A, Prabakaran S, Allamaneni SS. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod BioMed Online 2006; 12: 630-633. [DOI:10.1016/S1472-6483(10)61190-X]
82. Talebi A, Moein M, Tabibnejad N, Ghasemzadeh J. Effect of varicocele on chromatin condensation and DNA integrity of ejaculated spermatozoa using cytochemical tests. Andrologia 2008; 40: 245-251. [DOI:10.1111/j.1439-0272.2008.00852.x]
83. Ha HK, Park HJ, Park NC. Expression of E-cadherin and α-catenin in a varicocele-induced infertility rat model. Asian J Androl 2011; 13: 470-475. [DOI:10.1038/aja.2010.94]
84. Santoro G, Romeo C, Impellizzeri P, Ientile R, Cutroneo G, Trimarchi F, et al. Nitric oxide synthase patterns in normal and varicocele testis in adolescents. BJU Int 2001; 88: 967-973. [DOI:10.1046/j.1464-4096.2001.02446.x]
85. Mitropoulos D, Deliconstantinos G, Zervas A, Villiotou V, Dimopoulos C, Stavrides J. Nitric oxide synthase and xanthine oxidase activities in the spermatic vein of patients with varicocele: a potential role for nitric oxide and peroxynitrite in sperm dysfunction. J Urol 1996; 156: 1952-1958. [DOI:10.1016/S0022-5347(01)65403-X]
86. Fischer MA, Willis J, Zini A. Human sperm DNA integrity: correlation with sperm cytoplasmic droplets. Urology 2003; 61: 207-211. [DOI:10.1016/S0090-4295(02)02098-8]
87. Kashou AH, du Plessis SS, Agarwal A. The role of obesity in ROS generation and male infertility. Studies on Men's Health and Fertility: Springer; 2012: 571-590. [DOI:10.1007/978-1-61779-776-7_26]
88. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004; 114: 1752-1761. [DOI:10.1172/JCI21625]
89. Hjollund NHI, Bonde JPE, Jensen TK, Olsen J. Diurnal scrotal skin temperature and semen quality. Int J Androl 2000; 23: 309-318. [DOI:10.1046/j.1365-2605.2000.00245.x]
90. Magnusdottir EV, Thorsteinsson T, Thorsteinsdottir S, Heimisdottir M, Olafsdottir K. Persistent organochlorines, sedentary occupation, obesity and human male subfertility. Hum Reprod 2005; 20: 208-215. [DOI:10.1093/humrep/deh569]
91. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405-412. [DOI:10.2337/diab.40.4.405]
92. Bloch-Damti A, Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxidant Redox Signal 2005; 7: 1553-1567. [DOI:10.1089/ars.2005.7.1553]
93. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39: 44-84. [DOI:10.1016/j.biocel.2006.07.001]
94. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 2001; 108: 1341-1348. [DOI:10.1172/JCI11235]
95. Agbaje I, Rogers D, McVicar C, McClure N, Atkinson A, Mallidis C, et al. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod 2007; 22: 1871-1877. [DOI:10.1093/humrep/dem077]
96. Vignera S, Condorelli R, Vicari E, D'Agata R, Calogero AE. Diabetes mellitus and sperm parameters. J Androl 2012; 33: 145-153. [DOI:10.2164/jandrol.111.013193]
97. Alves MG, Oliveira PF, Oliveira P. Diabetes Mellitus and male re-productive function: where we stand. Int J Diabetol Vasc Dis Res 2013; 1: 1-2.
98. Mangoli E, Talebi AR, Anvari M, Pourentezari M. Effects of experimentally-induced diabetes on sperm parameters and chromatin quality in mice. Iran J Reprod Med 2013; 11: 53-60.
99. Talebi AR, Mangoli E, Nahangi H, Anvari M, Pourentezari M, Halvaei I. Vitamin C attenuates detrimental effects of diabetes mellitus on sperm parameters, chromatin quality and rate of apoptosis in mice. Eur J Obstet Gynecol Reprod Biol 2014; 181: 32-36. [DOI:10.1016/j.ejogrb.2014.07.007]
100. Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem 2007; 18: 357-371. [DOI:10.1016/j.jnutbio.2006.10.005]
101. Manna I, Jana K, Samanta P. Effect of different intensities of swimming exercise on testicular oxidative stress and reproductive dysfunction in mature male albino Wistar rats. Indian J Exp Biol 2004; 42: 816-822.
102. Fenster L, Katz DF, Wyrobek AJ, Pieper C, Rempel DM, Oman D, et al. Effects of psychological stress on human semen quality. J Androl 1997; 18: 194-202.
103. Eskiocak S, Gozen A, Taskiran A, Kilic A, Eskiocak M, Gulen S. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality. Braz J Med Biol Res 2006; 39: 581-588. [DOI:10.1590/S0100-879X2006000500003]
104. Eskiocak S, Gozen AS, Kilic AS, Molla S. Association between mental stress & some antioxidant enzymes of seminal plasma. Indian J Med Res 2005; 122: 491-496.
105. Desai N, Sabanegh E, Kim T, Agarwal A. Free radical theory of aging: implications in male infertility. Urology 2010; 75: 14-19. [DOI:10.1016/j.urology.2009.05.025]
106. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs E, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Nat Acad Sci 2006; 103: 9601-9606. [DOI:10.1073/pnas.0506468103]
107. Moskovtsev SI, Willis J, Mullen JBM. Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril 2006; 85: 496-949. [DOI:10.1016/j.fertnstert.2005.05.075]
108. Youssry M, Ozmen B, Orief Y, Zohni K, Al-Hasani S. Human sperm DNA damage in the context of assisted reproductive techniques. Iran J Reprod Med 2007; 5: 137-150.
109. Junqueira VB, Barros SB, Chan SS, Rodrigues L,Giavarotti L, Abud RL, et al. Aging and oxidative stress. Mol Aspects Med 2004; 25: 5-16. [DOI:10.1016/j.mam.2004.02.003]
110. Weir CP, Robaire B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl 2007; 28: 229-240. [DOI:10.2164/jandrol.106.001362]
111. Said TM, Gokul SR, Agarwal A. Clinical Consequences of Oxidative Stress in Male Infertility. Studies on Men's Health and Fertility: Springer; 2012: 535-549. [DOI:10.1007/978-1-61779-776-7_24]
112. Nadapdap T, Lutan D, Arsyad K, Ilyas S. Influence of Chitosan from Shrimp Skin to Quality and Quantity of Sperm of Albino Rats after Administration of Lead. Andrology 2014; 3: 114.
113. Agarwal D, Maronpot R, Lamb J, Kluwe W. Adverse effects of butyl benzyl phthalate on the reproductive and hematopoietic systems of male rats. Toxicology 1985; 35: 189-206. [DOI:10.1016/0300-483X(85)90015-0]
114. Nagao T, Ohta R, Marumo H, Shindo T, Yoshimura S, Ono H. Effect of butyl benzyl phthalate in Sprague-Dawley rats after gavage administration: a two-generation reproductive study. Reprod Toxicol 2000; 14: 513-532. [DOI:10.1016/S0890-6238(00)00105-2]
115. Lee E, Ahn MY, Kim HJ, Kim IY, Han SY, Kang TS, et al. Effect of di (n-butyl) phthalate on testicular oxidative damage and antioxidant enzymes in hyperthyroid rats. Environment Toxicol 2007; 22: 245-255. [DOI:10.1002/tox.20259]
116. Hamada AJ, Singh A, Agarwal A. Cell phones and their impact on male fertility: fact or fiction. Open Reprod Sci J 2011; 5: 125-137.
117. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril 2008; 89: 124-128. [DOI:10.1016/j.fertnstert.2007.01.166]
118. Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol 2006; 250: 66-69. [DOI:10.1016/j.mce.2005.12.026]
119. Gonzales G, Munoz G, Sanchez R, Henkel R, Gallegos-Avila G, Díaz-Gutierrez O, et al. Update on the impact of Chlamydia trachomatis infection on male fertility. Andrologia 2004; 36: 1-23. [DOI:10.1046/j.0303-4569.2003.00594.x]
120. Mazzilli F, Rossi T, Sabatini L, Pulcinelli F, Rapone S, Dondero F, et al. Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur Fertil 1994; 26: 145-148.
121. D'agata R, Vicari E, Moncada M, Sidoti G, Calogero A, Fornito M, et al. Generation of reactive oxygen species in subgroups of infertile men. Int J Androl 1990; 13: 344-351. [DOI:10.1111/j.1365-2605.1990.tb01042.x]
122. Wang A, Fanning L, Anderson D, Loughlin K. Generation of reactive oxygen species by leukocytes and sperm following exposure to urogenital tract infection. Syst Biol Reprod Med 1997; 39: 11-17. [DOI:10.3109/01485019708987896]
123. Zhang ZH, Zhu HB, Li LL, Yu Y, Zhang HG, Liu RZ. Decline of semen quality and increase of leukocytes with cigarette smoking in infertile men. Iran J Reprod Med 2013; 11: 589-596.
124. Chew BP, Park JS. Carotenoid action on the immune response. J Nutr 2004; 134: 257S-261S. [DOI:10.1093/jn/134.1.257S]
125. Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987; 326: 711-713. [DOI:10.1038/326711a0]
126. Tollon C, Soulié M, Pontonnier F, Plante P. [Prevention of sterility in spinal cord injured men]. Progres en urologie: 1997; 7: 203-208. (In French)
127. Keck C, Gerber-Schäfer C, Clad A, Wilhelm C, Breckwoldt M. Seminal tract infections: impact on male fertility and treatment options. Hum Reprod Update 1998; 4: 891-903. [DOI:10.1093/humupd/4.6.891]
128. Ochsendorf F. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update 1999; 5: 399-420. [DOI:10.1093/humupd/5.5.399]
129. Nicopoullos JD, Almeida PA, Ramsay JW, Gilling-Smith C. The effect of human immunodeficiency virus on sperm parameters and the outcome of intrauterine insemination following sperm washing. Hum Reprod 2004; 19: 2289-2297. [DOI:10.1093/humrep/deh426]
130. Frodsham LC, Boag F, Barton S, Gilling-Smith C. Human immunodeficiency virus infection and fertility care in the United Kingdom: demand and supply. Fertil Steril 2006; 85: 285-289. [DOI:10.1016/j.fertnstert.2005.07.1326]
131. Safarnavadeh T, Rastegarpanah M. Antioxidants and infertility treatment, the role of Satureja Khuzestanica: A mini-systematic review. Iran J Reprod Med 2011; 9: 61-70.
132. Khosrowbeygi A, Zarghami N, Deldar Y. Correlation between sperm quality parameters and seminal plasma antioxidants status. Iran J Reprod Med 2004; 2: 58-64.
133. Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev 1994; 52: 253-265. [DOI:10.1111/j.1753-4887.1994.tb01453.x]
134. Venkatesh S, Gurdeep Singh M, Prasad Gupta N, Kumar R, Deecaraman M, Dada R. Correlation of sperm morphology and oxidative stress in infertile men. Iran J Reprod Med 2009; 7: 29-34.
135. Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Rad Res 1999; 31: 261-272. [DOI:10.1080/10715769900300841]
136. Halliwell B. Free radicals and other reactive species in disease. John Wiley & Sons, Ltd, eLS; 2005.
137. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47-95. [DOI:10.1152/physrev.00018.2001]
138. Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Nat Acad Sci 1991; 88: 11003-11006. [DOI:10.1073/pnas.88.24.11003]
139. Sheikh N, Amiri I, Farimani M, Najafi R, Hadeie J. Correlation between sperm parameters and sperm DNA fragmentation in fertile and infertile men. Iran J Reprod Med 2008; 6: 13-18.
140. Griveau J, Dumont E, Renard P, Callegari J, Le Lannou D. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J Reprod Fertil 1995; 103: 17-26. [DOI:10.1530/jrf.0.1030017]
141. German JB, Traber MG. Nutrients and oxidation: Actions, transport, and metabolism of dietary antioxidants. Rucker RB, Suttie JW, Mccormick DB, Machlin LJ. Handbook of vitamins. 3rd Ed. New York, Marcel Dekker; 2001: 569-88.
142. Jube S, Borthakur D. Recent advances in food biotechnology research. Blackwell Publishing, Oxford, UK 2006: 35-70. [DOI:10.1002/9780470277577.ch3]
143. Ling Coh GM. Potential for Ginkgo biloba as a functional food [Ph.D. thesis]. Potential for Ginkgo biloba as a functional food; 2004.
144. Lenzi A, Gandini L, Picardo M, Tramer F, Sandri G, Panfili E. Lipoperoxidation damage of spermatozoa polyunsaturated fatty acids (PUFA): scavenger mechanisms and possible scavenger therapies. Front Biosci 2000; 5: 1-15.
145. Lanzafame FM, La Vignera S, Vicari E, Calogero AE.Oxidative stress and medical antioxidant treatment in male infertility. Reprod BioMed Online 2009; 19: 638-659. [DOI:10.1016/j.rbmo.2009.09.014]
146. Saraswat S, Kharche S, Jindal S. Impact of Reactive Oxygen Species on Spermatozoa: A Balancing Act between Beneficial and Detrimental Effects. Iran J Appl Anim Sci 2014; 4: 247-255.
147. Ko EY, Sabanegh ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril 2014; 102: 1518-1527. [DOI:10.1016/j.fertnstert.2014.10.020]
148. Keskes-Ammar L, Feki-Chakroun N, Rebai T, Sahnoun Z, Ghozzi H, Hammami S, et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Syst Biol Reprod Med 2003; 49: 83-94.
149. Blount JD, Møller AP, Houston DC. Antioxidants, showy males and sperm quality. Ecol Lett 2001; 4: 393-396. [DOI:10.1046/j.1461-0248.2001.00255.x]
150. Nouri M, Ghasemzadeh A, Farzadi L, Shahnazi V, Ghaffari Novin M. Vitamins C, E and lipid peroxidation levels in sperm and seminal plasma of asthenoteratozoospermic and normozoospermic men. Iran J Reprod Med 2008; 6: 1-5.
151. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 2005; 26: 349-353. [DOI:10.2164/jandrol.04146]
152. Oda SS, El-Maddawy ZK. Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Exp Toxicol Pathol 2012; 64: 813-819. [DOI:10.1016/j.etp.2011.03.001]
153. Adesiyan AC, Oyejola TO, Abarikwu SO, Oyeyemi MO, Farombi EO. Selenium provides protection to the liver but not the reproductive organs in an atrazine-model of experimental toxicity. Exp Toxicol Pathol 2011; 63: 201-207. [DOI:10.1016/j.etp.2009.11.008]
154. Omu A, Al-Azemi M, Kehinde E, Anim J, Oriowo M, Mathew T. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract 2008; 17: 108-116. [DOI:10.1159/000112963]
155. Zini A, Fischer MA, Nam RK, Jarvi K. Use of alternative and hormonal therapies in male infertility. Urology 2004; 63: 141-143. [DOI:10.1016/j.urology.2003.07.018]
156. Dragsted LO. Biomarkers of exposure to vitamins A, C, and E and their relation to lipid and protein oxidation markers. Eur J Nutr 2008; 47: 3- 18. [DOI:10.1007/s00394-008-2003-1]
157. Hwang K, Walters RC, Lipshultz LI. Contemporary concepts in the evaluation and management of male infertility. Nat Rev Urol 2011; 8: 86-94. [DOI:10.1038/nrurol.2010.230]
158. Agarwal A, Sekhon LH. Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: Is it justified? Indian J Urol 2011; 27: 74. [DOI:10.4103/0970-1591.78437]
159. Wang Y-N, Wang B, Liang M, Han C-Y, Zhang B, Cai J, et al. Down-regulation of CatSper1 channel in epididymal spermatozoa contributes to the pathogenesis of asthenozoospermia, whereas up-regulation of the channel by Sheng-Jing-San treatment improves the sperm motility of asthenozoospermia in rats. Fertil Steril 2013; 99: 579-587. [DOI:10.1016/j.fertnstert.2012.10.030]
160. Imhof M, Lackner J, Lipovac M, Chedraui P, Riedl C. Micronutrient supplementation increases sperm quality in the sub-fertile male. Eur Urol Rev 2011; 6: 45-49.
161. Aliabadi E, Mehranjani MS, Borzoei Z, Talaei-Khozani T, Mirkhani H, Tabesh H. Effects of L-carnitine and L-acetyl-carnitine on testicular sperm motility and chromatin quality. Iran J Reprod Med 2012; 10: 77-82.
162. Dehghani F, Hassanpour A, Poost-pasand A, Noorafshan A, Karbalay-Doust S. Protective effects of L-carnitine and homogenized testis tissue on the testis and sperm parameters of busulfan-induced infertile male rats. Iran J Reprod Med 2013; 11: 693-704.
163. Arcaniolo D, Favilla V, Tiscione D, Pisano F, Bozzini G, Creta M, et al. Is there a place for nutritional supplements in the treatment of idiopathic male infertility? Arch Ital Urol Androl 2014; 86: 164-170. [DOI:10.4081/aiua.2014.3.164]
164. Babaei H, Abshenas J. Zinc therapy improves adverse effects of long term administration of copper on epididymal sperm quality of rats. Iran J Reprod Med 2013; 11: 577-582.

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Designed & Developed by : Yektaweb